首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   6篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   3篇
  2007年   5篇
  2006年   6篇
  2005年   9篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   5篇
  1995年   1篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   4篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
排序方式: 共有86条查询结果,搜索用时 328 毫秒
31.
K. J. Lendzian 《Planta》1978,141(1):105-110
Glucose-6-phosphate dehydrogenase (EC 1.1.1.49) from spinach chloroplasts is strongly affected by interactions between Mg2+, proton, and substrate concentrations. Mg2+ activates the enzyme to different degrees; however, it is not essential for enzyme activity. The Mg2+-dependent activation follows a maximum curve, magnitude and position of the maximum being dependent on pH and NADPH/NADP+ ratios. At a ratio of zero and pH 7.2, maximum activity is observed at 10 mM Mg2+. Increasing the NADPH/NADP+ ratio up to 1.7 (a ratio measured in the stroma during a light period), maximum activity is shifted to much lower Mg2+ concentrations. At pH 8.2 (corresponding to the pH of the stroma in the light) and at a high NADPH/NADP+ ratio, enzyme activity is not affected by the Mg2+ ion. The results are discussed in relation to dark-light-dark regulation of the oxidative pentose phosphate cycle in spinach chloroplasts.Abbreviations DTT dithiothreitol - G-6-P glucose-6-phosphate - G-6-PDH glucose-6-phosphate dehydrogenase (EC 1.1.1.49) - PPC pentose phosphate cycle  相似文献   
32.
Ribonucleotide reductases (RNRs) catalyze the production of deoxyribonucleotides, which are essential for DNA synthesis and repair in all organisms. The three currently known classes of RNRs are postulated to utilize a similar mechanism for ribonucleotide reduction via a transient thiyl radical, but they differ in the way this radical is generated. Class I RNR, found in all eukaryotic organisms and in some eubacteria and viruses, employs a diferric iron center and a stable tyrosyl radical in a second protein subunit, R2, to drive thiyl radical generation near the substrate binding site in subunit R1. From extensive experimental and theoretical research during the last decades, a general mechanistic model for class I RNR has emerged, showing three major mechanistic steps: generation of the tyrosyl radical by the diiron center in subunit R2, radical transfer to generate the proposed thiyl radical near the substrate bound in subunit R1, and finally catalytic reduction of the bound ribonucleotide. Amino acid- or substrate-derived radicals are involved in all three major reactions. This article summarizes the present mechanistic picture of class I RNR and highlights experimental and theoretical approaches that have contributed to our current understanding of this important class of radical enzymes.  相似文献   
33.
This short review compiles high-field electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) studies on different intermediate amino acid radicals, which emerge in wild-type and mutant class I ribonucleotide reductase (RNR) both in the reaction of protein subunit R2 with molecular oxygen, which generates the essential tyrosyl radical, and in the catalytic reaction, which involves a radical transfer between subunits R2 and R1. Recent examples are presented, how different amino acid radicals (tyrosyl, tryptophan, and different cysteine-based radicals) were identified, assigned to a specific residue, and their interactions, in particular hydrogen bonding, were investigated using high-field EPR and ENDOR spectroscopy. Thereby, unexpected diiron-radical centers, which emerge in mutants of R2 with changed iron coordination, and an important catalytic cysteine-based intermediate in the substrate turnover reaction in R1 were identified and characterized. Experiments on the essential tyrosyl radical in R2 single crystals revealed the so far unknown conformational changes induced by formation of the radical. Interesting structural differences between the tyrosyl radicals of class Ia and Ib enzymes were revealed. Recently accurate distances between the tyrosyl radicals in the protein dimer R2 could be determined using pulsed electron-electron double resonance (PELDOR), providing a new tool for docking studies of protein subunits. These studies show that high-field EPR and ENDOR are important tools for the identification and investigation of radical intermediates, which contributed significantly to the current understanding of the reaction mechanism of class I RNR.  相似文献   
34.
Ribonucleotide reductase (RNR) of Chlamydia trachomatis is a class I RNR enzyme composed of two homodimeric components, proteins R1 and R2. In class I RNR, R1 has the substrate binding site, whereas R2 has a diferric site and normally in its active form a stable tyrosyl free radical. C. trachomatis RNR is unusual, because its R2 component has a phenylalanine in the place of the radical carrier tyrosine. Replacing the tyrosyl radical, a paramagnetic Fe(III)-Fe(IV) species (species X, normally a transient intermediate in the process leading to radical formation) may provide the oxidation equivalent needed to start the catalytic process via long range electron transfer from the active site in R1. Here EPR spectroscopy shows that in C. trachomatis RNR, species X can become essentially stable when formed in a complete RNR (R1/R2/substrate) complex, adding further weight to the possible role of this species X in the catalytic reaction.  相似文献   
35.
We evaluated the impact of non-native rainbow trout Oncorhynchus mykiss on a population of endemic Cedarberg ghost frog Heleophryne depressa in the upper Krom River (Olifants-Doring River Catchment, Cape Fold Ecoregion). We compared H. depressa abundance (using kick-sampling and underwater video analysis) and environmental conditions between sites above and below a waterfall that marks the upper distribution limit of O. mykiss. Heleophryne depressa abundance was significantly greater above the waterfall than that below it, and, because there was no significant difference in measured environmental variables, O. mykiss presence is identified as the most likely explanation for the observed decrease in H. depressa abundance.  相似文献   
36.
E Houben  de Gier JW    van Wijk KJ 《The Plant cell》1999,11(8):1553-1564
The mechanisms of targeting and insertion of chloroplast-encoded thylakoid membrane proteins are poorly understood. In this study, we have used a translation system isolated from chloroplasts to begin to investigate these mechanisms. The bacterial membrane protein leader peptidase (Lep) was used as a model protein because its targeting and insertion mechanisms are well understood for Escherichia coli and for the endoplasmic reticulum. Lep could thus provide insight into the functional homologies between the different membrane systems. Lep was efficiently expressed in the chloroplast translation system, and the protein could be inserted into thylakoid membranes with the same topology as in E. coli cytoplasmic membranes, following the positive-inside rule. Insertion of Lep into the thylakoid membrane was stimulated by the trans-thylakoid proton gradient and was strongly inhibited by azide, suggesting a requirement for SecA activity. Insertion most likely occurred in a cotranslational manner, because insertion could only be observed if thylakoid membranes were present during translation reactions but not when thylakoid membranes were added after translation reactions were terminated. To halt the elongation process at different stages, we translated truncated Lep mRNAs without a stop codon, resulting in the formation of stable ribosome nascent chain complexes. These complexes showed a strong, salt-resistant affinity for the thylakoid membrane, implying a functional interaction of the ribosome with the membrane and supporting a cotranslational insertion mechanism for Lep. Our study supports a functional homology for the insertion of Lep into the thylakoid membrane and the E. coli cytoplasmic membrane.  相似文献   
37.
Movement-deficient potato virus X (PVX) mutants tagged with the green fluorescent protein were used to investigate the role of the coat protein (CP) and triple gene block (TGB) proteins in virus movement. Mutants lacking either a functional CP or TGB were restricted to single epidermal cells. Microinjection of dextran probes into cells infected with the mutants showed that an increase in the plasmodesmal size exclusion limit was dependent on one or more of the TGB proteins and was independent of CP. Fluorescently labeled CP that was injected into epidermal cells was confined to the injected cells, showing that the CP lacks an intrinsic transport function. In additional experiments, transgenic plants expressing the PVX CP were used as rootstocks and grafted with nontransformed scions. Inoculation of the PVX CP mutants to the transgenic rootstocks resulted in cell-to-cell and systemic movement within the transgenic tissue. Translocation of the CP mutants into sink leaves of the nontransgenic scions was also observed, but infection was restricted to cells close to major veins. These results indicate that the PVX CP is transported through the phloem, unloads into the vascular tissue, and subsequently is transported between cells during the course of infection. Evidence is presented that PVX uses a novel strategy for cell-to-cell movement involving the transport of filamentous virions through plasmodesmata.  相似文献   
38.
The location of the 3a movement protein (MP) of cucumber mosaic virus (CMV) was studied by quantitative immunogold labeling of the wild-type 3a MP in leaves of Nicotiana clevelandii infected by CMV as well as by using a 3a-green fluorescent protein (GFP) fusion expressed from a potato virus X (PVX) vector. Whether expressed from CMV or PVX, the 3a MP targeted plasmodesmata and accumulated in the central cavity of the pore. Within minor veins, the most extensively labeled plasmodesmata were those connecting sieve elements and companion cells. In addition to targeting plasmodesmata, the 3a MP accumulated in the parietal layer of mature sieve elements. Confocal imaging of cells expressing the 3a-GFP fusion protein showed that the 3a MP assembled into elaborate fibrillar formations in the sieve element parietal layer. The ability of 3a-GFP, expressed from PVX rather than CMV, to enter sieve elements demonstrates that neither the CMV RNA nor the CMV coat protein is required for trafficking of the 3a MP into sieve elements. CMV virions were not detected in plasmodesmata from CMV-infected tissue, although large CMV aggregates were often found in the parietal layer of sieve elements and were usually surrounded by 3a MP. These data suggest that CMV traffics into minor vein sieve elements as a ribonucleoprotein complex that contains the viral RNA, coat protein, and 3a MP, with subsequent viral assembly occurring in the sieve element parietal layer.  相似文献   
39.
The photoexcited triplet states of bacteriochlorophyll a, 3BChl a, and of the primary donor in reaction centers of Rhodobacter sphaeroides R-26, 3P865, are investigated by pulsed EPR and ENDOR spectroscopy. In 3P865 a splitting of ENDOR lines and reduction of corresponding positive and negative hyperfine couplings as compared with the monomeric 3BChl a is observed. This indicates an asymmetric distribution of the triplet excitation over the two BChl a moieties, PL and PM, forming 3P865. Based on the signs of the hyperfine couplings and on a comparison with the cation and anion radical of BChl a an assignment to nuclei in the different dimer halves is proposed. This yields an estimate for the extent of delocalization of the triplet excitation over PL and PM and for the charge transfer contribution of 3P865.  相似文献   
40.
The genus Manota is recorded from Japan for the first time. Three new species, Manota satoyamanis, Manota indahae and Manota tunoae spp. nov., are described, based on specimens collected in an ecological sampling program of arthropods in the “satoyama” landscape of Ishikawa Prefecture. “Satoyama” represents the traditional rural landscape of Japan, which is characterized by a mosaic of secondary forests, plantations, ponds and rice paddy fields. The new species raise the number of Palearctic Manota species from five to eight.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号