首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2985篇
  免费   186篇
  国内免费   2篇
  3173篇
  2023年   24篇
  2022年   35篇
  2021年   75篇
  2020年   44篇
  2019年   62篇
  2018年   64篇
  2017年   43篇
  2016年   83篇
  2015年   132篇
  2014年   154篇
  2013年   155篇
  2012年   231篇
  2011年   188篇
  2010年   122篇
  2009年   101篇
  2008年   163篇
  2007年   151篇
  2006年   120篇
  2005年   122篇
  2004年   138篇
  2003年   103篇
  2002年   111篇
  2001年   38篇
  2000年   46篇
  1999年   42篇
  1998年   35篇
  1997年   30篇
  1996年   30篇
  1995年   18篇
  1994年   22篇
  1993年   18篇
  1992年   36篇
  1991年   19篇
  1990年   28篇
  1989年   33篇
  1988年   34篇
  1987年   29篇
  1986年   30篇
  1985年   31篇
  1984年   33篇
  1983年   17篇
  1982年   24篇
  1981年   17篇
  1980年   13篇
  1979年   18篇
  1978年   13篇
  1975年   9篇
  1974年   10篇
  1973年   10篇
  1970年   12篇
排序方式: 共有3173条查询结果,搜索用时 0 毫秒
141.
Mating has profound effects on animal physiology and behaviour, not only in females but also in males, which we show here for olfactory responses. In cotton leafworm moths, Spodoptera littoralis, odour-mediated attraction to sex pheromone and plant volatiles are modulated after mating, producing a behavioural response that matches the physiological condition of the male insect. Unmated males are attracted by upwind flight to sex pheromone released by calling females, as well as to volatiles of lilac flowers and green leaves of the host plant cotton, signalling adult food and mating sites, respectively. Mating temporarily abolishes male attraction to females and host plant odour, but does not diminish attraction to flowers. This behavioural modulation is correlated with a response modulation in the olfactory system, as shown by electro-physiological recordings from antennae and by functional imaging of the antennal lobe, using natural odours and synthetic compounds. An effect of mating on the olfactory responses to pheromone and cotton plant volatiles but not to lilac flowers indicates the presence of functionally independent neural circuits within the olfactory system. Our results indicate that these circuits interconnect and weigh perception of social and habitat odour signals to generate appropriate behavioural responses according to mating state.  相似文献   
142.
Using chemical extraction to evaluate plant arsenic availability in contaminated soils is important to estimate the time frame for site cleanup during phytoremediation. It is also of great value to assess As mobility in soil and its risk in environmental contamination. In this study, four conventional chemical extraction methods (water, ammonium sulfate, ammonium phosphate, and Mehlich III) and a new root-exudate based method were used to evaluate As extractability and to correlate it with As accumulation in P. vittata growing in five As-contaminated soils under greenhouse condition. The relationship between different soil properties, and As extractability and plant As accumulation was also investigated. Arsenic extractability was 4.6%, 7.0%, 18%, 21%, and 46% for water, ammonium sulfate, organic acids, ammonium phosphate, and Mehlich III, respectively. Root exudate (organic acids) solution was suitable for assessing As bioavailability (81%) in the soils while Mehlich III (31%) overestimated the amount of As taken up by plants. Soil organic matter, P and Mg concentrations were positively correlated to plant As accumulation whereas Ca concentration was negatively correlated. Further investigation is needed on the effect of Ca and Mg on As uptake by P. vittata. Moreover, additional As contaminated soils with different properties should be tested.  相似文献   
143.
Nano-sized (10(-9)-10(-7) m) particles offer many technical and biomedical advances over the bulk material. The use of nanoparticles in cosmetics, detergents, food and other commercial products is rapidly increasing despite little knowledge of their effect on organism metabolism. We show here that commercially manufactured polystyrene nanoparticles, transported through an aquatic food chain from algae, through zooplankton to fish, affect lipid metabolism and behaviour of the top consumer. At least three independent metabolic parameters differed between control and test fish: the weight loss, the triglycerides∶cholesterol ratio in blood serum, and the distribution of cholesterol between muscle and liver. Moreover, we demonstrate that nanoparticles bind to apolipoprotein A-I in fish serum in-vitro, thereby restraining them from properly utilising their fat reserves if absorbed through ingestion. In addition to the metabolic effects, we show that consumption of nanoparticle-containing zooplankton affects the feeding behaviour of the fish. The time it took the fish to consume 95% of the food presented to them was more than doubled for nanoparticle-exposed compared to control fish. Since many nano-sized products will, through the sewage system, end up in freshwater and marine habitats, our study provides a potential bioassay for testing new nano-sized material before manufacturing. In conclusion, our study shows that from knowledge of the molecular composition of the protein corona around nanoparticles it is possible to make a testable molecular hypothesis and bioassay of the potential biological risks of a defined nanoparticle at the organism and ecosystem level.  相似文献   
144.
COPI vesicles serve for transport of proteins and membrane lipids in the early secretory pathway. Their coat protein (coatomer) is a heptameric complex that is recruited to the Golgi by the small GTPase Arf1. Although recruited en bloc, coatomer can be viewed as a stable assembly of an adaptin‐like tetrameric subcomplex (CM4) and a trimeric ‘cage’ subcomplex (CM3). Following recruitment, coatomer stimulates ArfGAP‐dependent GTP hydrolysis on Arf1. Here, we employed recombinant coatomer subcomplexes to study the role of coatomer components in the regulation of ArfGAP2, an ArfGAP whose activity is strictly coatomer‐dependent. Within CM4, we define a novel hydrophobic pocket for ArfGAP2 interaction on the appendage domain of γ1‐COP. The CM4 subcomplex (but not CM3) is recruited to membranes through Arf1 and can subsequently recruit ArfGAP2. Neither CM3 nor CM4 in itself is effective in stimulating ArfGAP2 activity, but stimulation is regained when both subcomplexes are present. Our findings point to a distinct role of each of the two coatomer subcomplexes in the regulation of ArfGAP2‐dependent GTP hydrolysis on Arf1, where the CM4 subcomplex functions in GAP recruitment, while, similarly to the COPII system, the cage‐like CM3 subcomplex stimulates the catalytic reaction.  相似文献   
145.

Introduction

Below ground orientation in insects relies mainly on olfaction and taste. The economic impact of plant root feeding scarab beetle larvae gave rise to numerous phylogenetic and ecological studies. Detailed knowledge of the sensory capacities of these larvae is nevertheless lacking. Here, we present an atlas of the sensory organs on larval head appendages of Melolontha melolontha. Our ultrastructural and electrophysiological investigations allow annotation of functions to various sensory structures.

Results

Three out of 17 ascertained sensillum types have olfactory, and 7 gustatory function. These sensillum types are unevenly distributed between antennae and palps. The most prominent chemosensory organs are antennal pore plates that in total are innervated by approximately one thousand olfactory sensory neurons grouped into functional units of three-to-four. In contrast, only two olfactory sensory neurons innervate one sensillum basiconicum on each of the palps. Gustatory sensilla chaetica dominate the apices of all head appendages, while only the palps bear thermo-/hygroreceptors. Electrophysiological responses to CO2, an attractant for many root feeders, are exclusively observed in the antennae. Out of 54 relevant volatile compounds, various alcohols, acids, amines, esters, aldehydes, ketones and monoterpenes elicit responses in antennae and palps. All head appendages are characterized by distinct olfactory response profiles that are even enantiomer specific for some compounds.

Conclusions

Chemosensory capacities in M. melolontha larvae are as highly developed as in many adult insects. We interpret the functional sensory units underneath the antennal pore plates as cryptic sensilla placodea and suggest that these perceive a broad range of secondary plant metabolites together with CO2. Responses to olfactory stimulation of the labial and maxillary palps indicate that typical contact chemo-sensilla have a dual gustatory and olfactory function.  相似文献   
146.
Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (n = 3) across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (≈2×) compared to individual muscle control. Our results are consistent with the idea that hierarchical, task-level neural control mechanisms previously associated with voluntary tasks may also be used in automatic brainstem-mediated pathways for balance.  相似文献   
147.
148.
We investigated the effects of photobiomodulation therapy (PBMT) and conditioned medium (CM) of human bone marrow mesenchymal stem cells (hBM-MSC) individually and/or in combination on the stereological parameters and the expression of basic fibroblast growth factor (bFGF), hypoxia-inducible factor (HIF-1α), and stromal cell–derived factor-1α (SDF-1α) in a wound model infected with methicillin-resistant Staphylococcus aureus (MRSA) in diabetic rats. CM was provided by culturing hBM-MSCs. Type 1 diabetes mellitus (T1DM) was induced in 72 rats, divided into four groups, harboring 18 rats each: group 1 served as a control group, group 2 received PBMT, group 3 received CM, and group 4 received CM + PBMT. On days 4, 7, and 15, six animals from each group were euthanized and the skin samples were separated for stereology examination and gene expression analysis by real-time polymerase chain reaction. In the CM + PBMT, CM, and PBMT groups, significant decreases were induced in the number of neutrophils (1460 ± 93, 1854 ± 138, 1719 ± 248) and macrophages (539 ± 69, 804 ± 63, 912 ± 41), and significant increases in the number of fibroblasts (1073 ± 116, 836 ± 75, 912 ± 41) and angiogenesis (15 230 ± 516, 13 318 ± 1116, 14 041 ± 867), compared with those of the control group (2690 ± 371, 1139 ± 145, 566 ± 90, 12 585 ± 1219). Interestingly, the findings of the stereological examination in the CM + PBMT group were statistically more significant than those in the other groups. In the PBMT group, in most cases, the expression of bFGF, HIF-1α, and SDF-1α, on day 4 (27.7 ± 0.14, 28.8 ± 0.52, 27.5 ± 0.54) and day 7 (26.8 ± 1.4, 29.6 ± 1.4, 28.3 ± 1.2) were more significant than those in the control (day 4, 19.3 ± 0.42, 25.5 ± 0.08, 22.6 ± 0.04; day 7, 22.3 ± 0.22, 28.3 ± 0.59, 24.3 ± 0.19) and other treatment groups. The application of PBMT + CM induced anti-inflammatory and angiogenic activities, and hastened wound healing process in a T1 DM model of MRSA infected wound.  相似文献   
149.
The gamma-secretase complex catalyzes intramembrane proteolysis of a number of transmembrane proteins, including amyloid precursor protein, Notch, ErbB4, and E-cadherin. gamma-Secretase is known to contain four major protein constituents: presenilin (PS), nicastrin, Aph-1, and Pen-2, all of which are integral membrane proteins. There is increasing evidence that the formation of the complex and the stability of the individual components are tightly controlled in the cell, assuring correct composition of functional complexes. In this report, we investigate the topology, localization, and mechanism for destabilization of Pen-2 in relation to PS function. We show that PS1 regulates the subcellular localization of Pen-2: in the absence of PS, Pen-2 is sequestered in the endoplasmic reticulum (ER) and not transported to post-ER compartments, where the mature gamma-secretase complexes reside. PS deficiency also leads to destabilization of Pen-2, which is alleviated by proteasome inhibitors. In keeping with this, we show that Pen-2, which adopts a hairpin structure with the N and C termini facing the luminal space, is ubiquitylated prior to degradation and presumably retrotranslocated from the ER to the cytoplasm. Collectively, our data suggest that failure to become incorporated into the gamma-secretase complex leads to degradation of Pen-2 through the ER-associated degradation-proteasome pathway.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号