首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3321篇
  免费   256篇
  国内免费   2篇
  3579篇
  2023年   23篇
  2022年   45篇
  2021年   84篇
  2020年   53篇
  2019年   60篇
  2018年   50篇
  2017年   45篇
  2016年   98篇
  2015年   168篇
  2014年   166篇
  2013年   171篇
  2012年   260篇
  2011年   209篇
  2010年   130篇
  2009年   116篇
  2008年   180篇
  2007年   180篇
  2006年   139篇
  2005年   138篇
  2004年   138篇
  2003年   95篇
  2002年   133篇
  2001年   61篇
  2000年   56篇
  1999年   48篇
  1998年   33篇
  1997年   27篇
  1996年   24篇
  1994年   27篇
  1993年   26篇
  1992年   43篇
  1991年   35篇
  1990年   32篇
  1989年   21篇
  1988年   25篇
  1987年   29篇
  1986年   29篇
  1985年   24篇
  1984年   32篇
  1983年   20篇
  1982年   17篇
  1981年   15篇
  1980年   15篇
  1979年   15篇
  1978年   17篇
  1976年   19篇
  1975年   16篇
  1974年   24篇
  1972年   15篇
  1971年   18篇
排序方式: 共有3579条查询结果,搜索用时 15 毫秒
971.
A new assay was developed to measure the N-deacetylase activity of the glucosaminyl N-deacetylase/N-sulfotransferases (NDSTs), which are key enzymes in sulfation of heparan sulfate (HS)/heparin. The assay is based on the recognition of NDST-generated N-unsubstituted glucosamine units in Escherichia coli K5 capsular polysaccharide or in HSs by monoclonal antibody JM-403. Substrate specificity and potential product inhibition of the NDST isoforms 1 and 2 were analyzed by comparing lysates of human 293 kidney cells stably transfected with mouse NDST-1 or -2. We found HSs to be excellent substrates for both NDST enzymes. Both NDST-1 and -2 N-deacetylate heparan sulfate from human aorta ( approximately 0.6 sulfate groups/disaccharide) with comparable high efficiency, apparent Km values of 0.35 and 0.76 microM (calculation based on [HexA]) being lower (representing a higher affinity) than those for K5 polysaccharide (13.3 and 4.7 microM, respectively). Comparison of various HS preparations and the unsulfated K5 polysaccharide as substrates indicate that both NDST-1 and -2 can differentially N-sulfate polysaccharides already modified to some extent by various other enzymes involved in HS/heparin synthesis. Both enzymes were equally inhibited by N-sulfated sequences (>or=6 sugar residues) present in N-sulfated K5, N-deacetylated N-resulfated HS, and heparin. Our primary findings were confirmed in the conventional N-deacetylase assay measuring the release of 3H-acetate of radiolabeled K5 or HS as substrates. We furthermore showed that NDST N-deacetylase activity in crude cell/tissue lysates can be partially blocked by endogenous HS/heparin. We speculate that in HS biosynthesis, some NDST variants initiate HS modification/sulfation reactions, whereas other (or the same) NDST isoforms later on fill in or extend already modified HS sequences.  相似文献   
972.
The puzzle of the emergence of cooperation between unrelated individuals is shared across diverse fields of behavioural sciences and economics. In this article we combine the public goods game originating in economics with evolutionary approaches traditionally used in biology. Instead of pairwise encounters, we consider the more complex case of groups of three interacting individuals. We show that territoriality is capable of promoting cooperative behaviour, as in the case of the Prisoner's Dilemma. Moreover, by adding punishment opportunities, the readiness to cooperate is greatly enhanced and asocial strategies can be largely suppressed. Finally, as soon as players carry a reputation for being willing or unwilling to punish, highly cooperative and fair outcomes are achieved. This group-beneficial result is obtained, intriguingly, by making individuals more likely to exploit their co-players if they can get away with it. Thus, less-cooperative individuals make more-cooperative societies.  相似文献   
973.
In type 2 diabetes, beta-cells become glucose unresponsive, contributing to hyperglycemia. To address this problem, we recently created clonal insulin-producing cell lines from the INS-1 insulinoma line, which exhibit glucose responsiveness ranging from poor to robust. Here, mechanisms that determine secretory performance were identified by functionally comparing glucose-responsive 832/13 beta-cells with glucose-unresponsive 832/2 beta-cells. Thus, insulin secretion from 832/13 cells maximally rose 8-fold in response to glucose, whereas 832/2 cells responded only 1.5-fold. Insulin content in both lines was similar, indicating that differences in stimulus-secretion coupling account for the differential secretory performance. Forskolin or isobutylmethylxanthine markedly enhanced insulin secretion from 832/13 but not from 832/2 cells, suggesting that cAMP is essential for the enhanced secretory performance of 832/13 cells. Indeed, 8-bromoadenosine-3',5'-cyclic monophosphorothioate, rp-isomer (Rp-8-Br-cAMPS) an inhibitor of protein kinase A (PKA), inhibited insulin secretion in response to glucose with or without forskolin. Interestingly, whereas forskolin markedly increased cAMP in 832/2 cells, 832/13 cells exhibited only a marginal rise in cAMP. This suggests that 832/13 cells are more sensitive to cAMP. Indeed, the cAMP-induced exocytotic response in patch-clamped 832/13 cells was 2-fold greater than in 832/2 cells. Furthermore, immunoblotting revealed that expression of the catalytic subunit of PKA was 2-fold higher in 832/13 cells. Moreover, when the regulatory subunit of PKA was overexpressed in 832/13 cells, to reduce the level of unbound and catalytically active kinase, insulin secretion and PKA activity were blunted. Our findings show that cAMP-PKA signaling correlates with secretory performance in beta-cells.  相似文献   
974.
The cloning and sequencing of the gap1 operon, which encodes the glycolytic NAD-specific glyceraldehyde-3-phosphate dehydrogenase in the cyanobacterium Synechococcus PCC 7942, showed that the gap1 gene is closely linked to the glgP gene encoding glycogen phosphorylase (an enzyme that catalyzes the first step of glycogen degradation). Northern blotting experiments showed that the gap1 and glgP genes are co-expressed and organized in a bicistronic operon, whose expression is enhanced under anaerobic conditions. The nucleotide sequence of the operon has been submitted to GenBank under accession number AF428099.  相似文献   
975.
Cardiolipin stabilizes respiratory chain supercomplexes   总被引:19,自引:0,他引:19  
Cardiolipin stabilized supercomplexes of Saccharomyces cerevisiae respiratory chain complexes III and IV (ubiquinol:cytochrome c oxidoreductase and cytochrome c oxidase, respectively), but was not essential for their formation in the inner mitochondrial membrane because they were found also in a cardiolipin-deficient strain. Reconstitution with cardiolipin largely restored wild-type stability. The putative interface of complexes III and IV comprises transmembrane helices of cytochromes b and c1 and tightly bound cardiolipin. Subunits Rip1p, Qcr6p, Qcr9p, Qcr10p, Cox8p, Cox12p, and Cox13p and cytochrome c were not essential for the assembly of supercomplexes; and in the absence of Qcr6p, the formation of supercomplexes was even promoted. An additional marked effect of cardiolipin concerns cytochrome c oxidase. We show that a cardiolipin-deficient strain harbored almost inactive resting cytochrome c oxidase in the membrane. Transition to the fully active pulsed state occurred on a minute time scale.  相似文献   
976.
COOH-terminal (S3) domains are conserved within the MscL family of bacterial mechanosensitive channels, but their function remains unclear. The X-ray structure of MscL from Mycobacterium tuberculosis (TbMscL) revealed cytoplasmic domains forming a pentameric bundle (Chang, G., R.H. Spencer, A.T. Lee, M.T. Barclay, and D.C. Rees. 1998. SCIENCE: 282:2220-2226). The helices, however, have an unusual orientation in which hydrophobic sidechains face outside while charged residues face inside, possibly due to specific crystallization conditions. Based on the structure of pentameric cartilage protein, we modeled the COOH-terminal region of E. coli MscL to better satisfy the hydrophobicity criteria, with sidechains of conserved aliphatic residues all inside the bundle. Molecular dynamic simulations predicted higher stability for this conformation compared with one modeled after the crystal structure of TbMscL, and suggested distances for disulfide trapping experiments. The single cysteine mutants L121C and I125C formed dimers under ambient conditions and more so in the presence of an oxidant. The double-cysteine mutants, L121C/L122C and L128C/L129C, often cross-link into tetrameric and pentameric structures, consistent with the new model. Patch-clamp examination of these double mutants under moderately oxidizing or reducing conditions indicated that the bundle cross-linking neither prevents the channel from opening nor changes thermodynamic parameters of gating. Destabilization of the bundle by replacing conservative leucines with small polar residues, or complete removal of COOH-terminal domain (Delta110-136 mutation), increased the occupancy of subconducting states but did not change gating parameters substantially. The Delta110-136 truncation mutant was functional in in vivo osmotic shock assays; however, the amount of ATP released into the shock medium was considerably larger than in controls. The data strongly suggest that in contrast to previous gating models (Sukharev, S., M. Betanzos, C.S. Chiang, and H.R. Guy. 2001a. NATURE: 409:720-724.), S3 domains are stably associated in both closed and open conformations. The bundle-like assembly of cytoplasmic helices provides stability to the open conformation, and may function as a size-exclusion filter at the cytoplasmic entrance to the MscL pore, preventing loss of essential metabolites.  相似文献   
977.
We have investigated the frequency of methylation of several tumour suppressor genes in uveal melanoma. As the loss of one copy of chromosome 3 (monosomy 3), which is found in about half of these tumours, is tightly associated with metastatic disease, a special emphasis was laid on genes located on this chromosome, including the fragile histidine triad (FHIT), von Hippel-Lindau (VHL), beta-catenin (CTNNB1), activated leukocyte cell adhesion molecule (ALCAM) and retinoic acid receptor-beta2 (RARB) genes. In addition, the methylation patterns of the CpG-rich regions 5' of the E-cadherin (CDH1), p16/cyclin-dependent kinase inhibitor 2 A (CDKN2A) and retinoblastoma (RB1) genes were analysed by bisulphite genomic sequencing or methylation-specific PCR (MSP). Furthermore, the SNRPN and D15S63 loci, which are located in the imprinted region of chromosome 15, were included in the study. Aberrant methylation was detected in nine of 40 tumours analysed: The imprinted SNRPN and D15S63 loci were hypermethylated in three tumours, all of which retained both copies of chromosome 3. Methylated RARB alleles were detected in three tumours, whereas in three other tumours CDKN2A was found to be methylated. As we did not find RARB and CDKN2A preferentially methylated in tumours with monosomy 3, which is a significant predictor of metastatic disease, we suggest that these genes may play a causative role in the formation of uveal melanoma but not in the development of metastases.  相似文献   
978.
We have investigated the mechanism of PKC-induced actin reorganization in A7r5 vascular smooth muscle cells. PKC activation by 12-O-tetradecanoylphorbol-13-acetate induces the disassembly of actin stress fibers concomitant with the appearance of membrane ruffles. PKC also induces rapid tyrosine phosphorylation in these cells. As we could show, utilizing the Src-specific inhibitor PP2 and a kinase-deficient c-Src mutant, actin reorganization is dependent on PKC-induced Src activation. Subsequently, the activity of the small G-protein RhoA is decreased, whereas Rac and Cdc42 activities remain unchanged. Disassembly of actin stress fibers could also be observed using the Rho kinase-specific inhibitor Y-27632, indicating that the decrease in RhoA activity on its own is responsible for actin reorganization. In addition, we show that tyrosine phosphorylation of p190RhoGAP is increased upon 12-O-tetradecanoylphorbol-13-acetate stimulation, directly linking Src activation to a decrease in RhoA activity. Our data provide substantial evidence for a model elucidating the molecular mechanisms of PKC-induced actin rearrangements.  相似文献   
979.
Two distinct genes encode the 93% homologous type 1 (placenta, peripheral tissues) and type 2 (adrenals, gonads) 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD/isomerase) in humans. Mutagenesis studies using the type 1 enzyme have produced the Y154F and K158Q mutant enzymes in the Y(154)-P-H(156)-S-K(158) motif as well as the Y269S and K273Q mutants from a second motif, Y(269)-T-L-S-K(273), both of which are present in the primary structure of the human type 1 3beta-HSD/isomerase. In addition, the H156Y mutant of the type 1 enzyme has created a chimera of the type 2 enzyme motif (Y(154)-P-Y(156)-S-K(158)) in the type 1 enzyme. The mutant and wild-type enzymes have been expressed and purified. The K(m) value of dehydroepiandrosterone is 13-fold greater, and the maximal turnover rate (K(cat)) is 2-fold greater for wild-type 2 3beta-HSD compared with the wild-type 1 3beta-HSD activity. The H156Y mutant of the type 1 enzyme has substrate kinetic constants for 3beta-HSD activity that are very similar to those of the wild-type 2 enzyme. Dixon analysis shows that epostane inhibits the 3beta-HSD activity of the wild-type 1 enzyme with 14-17-fold greater affinity compared with the wild-type 2 and H156Y enzymes. The Y154F and K158Q mutants exhibit no 3beta-HSD activity, have substantial isomerase activity, and utilize substrate with K(m) values similar to those of wild-type 1 isomerase. The Y269S and K273Q mutants have low, pH-dependent 3beta-HSD activity, exhibit only 5% of the maximal isomerase activity, and utilize the isomerase substrate very poorly. From these studies, a structural basis for the profound differences in the substrate and inhibition kinetics of the wild-type 1 and 2 3beta-HSD, plus a catalytic role for the Tyr(154) and Lys(158) residues in the 3beta-HSD reaction have been identified. These advances in our understanding of the structure/function of human type 1 and 2 3beta-HSD/isomerase may lead to the design of selective inhibitors of the type 1 enzyme not only in placenta to control the onset of labor but also in hormone-sensitive breast, prostate, and choriocarcinoma tumors to slow their growth.  相似文献   
980.
During apoptosis, Bax-type proteins permeabilize the outer mitochondrial membrane to release intermembrane apoptogenic factors into the cytosol via a poorly understood mechanism. We have proposed that Bax and DeltaN76Bcl-x(L) (the Bax-like cleavage fragment of Bcl-x(L)) function by forming pores that are at least partially composed of lipids (lipidic pore formation). Since the membrane monolayer must bend during lipidic pore formation, we here explore the effect of intrinsic membrane monolayer curvature on pore formation. Nonlamellar lipids with positive intrinsic curvature such as lysophospholipids promoted membrane permeabilization, whereas nonlamellar lipids with negative intrinsic curvature such as diacylglycerol and phosphatidylethanolamine inhibited membrane permeabilization. The differential effects of nonlamellar lipids on membrane permeabilization were not correlated with lipid-induced changes in membrane binding or insertion of Bax or DeltaN76Bcl-x(L). Altogether, these results are consistent with a model whereby Bax-type proteins change the bending propensity of the membrane to form pores comprised at least in part of lipids in a structure of net positive monolayer curvature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号