首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1802篇
  免费   110篇
  国内免费   2篇
  2024年   4篇
  2023年   20篇
  2022年   31篇
  2021年   62篇
  2020年   33篇
  2019年   47篇
  2018年   35篇
  2017年   30篇
  2016年   67篇
  2015年   96篇
  2014年   115篇
  2013年   108篇
  2012年   161篇
  2011年   120篇
  2010年   80篇
  2009年   72篇
  2008年   110篇
  2007年   111篇
  2006年   77篇
  2005年   84篇
  2004年   87篇
  2003年   64篇
  2002年   74篇
  2001年   9篇
  2000年   8篇
  1999年   15篇
  1998年   20篇
  1997年   13篇
  1996年   13篇
  1995年   7篇
  1994年   11篇
  1993年   7篇
  1992年   8篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   6篇
  1986年   11篇
  1985年   7篇
  1984年   15篇
  1983年   4篇
  1982年   12篇
  1981年   3篇
  1980年   6篇
  1979年   3篇
  1977年   4篇
  1971年   3篇
  1969年   3篇
  1957年   2篇
排序方式: 共有1914条查询结果,搜索用时 15 毫秒
201.
202.
Viral infections often lead to arthralgias and overt arthritic states. The inflammatogenic compound of the viruses giving rise to such an outcome has to date not been identified. Because expression of dsRNA is a common feature of all viruses, we decided to analyze whether this property leads to the induction of arthritis. Histological signs of arthritis were evident already on day 3 following intra-articular administration of dsRNA. Arthritis was characterized by infiltration of macrophages into synovial tissue. It was not dependent on acquired immune responses because SCID mice also raised joint inflammation. NF-kappa B was activated upon in vitro exposure to dsRNA, indicating its role in the induction/progression of arthritis. Importantly, we found that dsRNA arthritis was triggered through IL-1R signaling because mice being deficient for this molecule were unable to develop joint inflammation. Although dsRNA is typically recognized by Toll-like receptor 3, Toll-like receptor 3 knockout mice developed arthritis, indicating that some other receptors are instrumental in the inducing of inflammation. Our results from in vitro experiments indicate that proinflammatory cytokines and chemokines stimulating monocyte influx were readily triggered in response to stimulation with dsRNA. These findings demonstrate that viral dsRNA is clearly arthritogenic. Importantly, macrophages and their products play an important role in the development of arthritis triggered by dsRNA.  相似文献   
203.
Influenza A virus (IAV) is the etiological agent of a highly contagious acute respiratory disease that causes epidemics and considerable mortality annually. Recently, we demonstrated, using an in vitro approach, that the pattern recognition Toll-like receptor (TLR)3 plays a key role in the immune response of lung epithelial cells to IAV. In view of these data and the fact that the functional role of TLR3 in vivo is still debated, we designed an investigation to better understand the role of TLR3 in the mechanisms of IAV pathogenesis and host immune response using an experimental murine model. The time-course of several dynamic parameters, including animal survival, respiratory suffering, viral clearance, leukocyte recruitment into the airspaces and secretion of critical inflammatory mediators, was compared in infected wild-type and TLR3(-/-) mice. First, we found that the pulmonary expression of TLR3 is constitutive and markedly upregulated following influenza infection in control mice. Notably, when compared to wild-type mice, infected TLR3-/- animals displayed significantly reduced inflammatory mediators, including RANTES (regulated upon activation, normal T cell expressed and secreted), interleukin-6, and interleukin-12p40/p70 as well as a lower number of CD8+ T lymphocytes in the bronchoalveolar airspace. More important, despite a higher viral production in the lungs, mice deficient in TLR3 had an unexpected survival advantage. Hence, to our knowledge, our findings show for the first time that TLR3-IAV interaction critically contributes to the debilitating effects of a detrimental host inflammatory response.  相似文献   
204.
We synthesized homologated truncated 4′-thioadenosine analogues 3 in which a methylene (CH2) group was inserted in place of the glycosidic bond of a potent and selective A3 adenosine receptor antagonist 2. The analogues were designed to induce maximum binding interaction in the binding site of the A3 adenosine receptor. However, all homologated nucleosides were devoid of binding affinity at all subtypes of adenosine receptors, indicating that free rotation through the single bond allowed the compound to adopt an indefinite number of conformations, disrupting the favorable binding interaction essential for receptor recognition.  相似文献   
205.
Inactivation of the mainly endosomal 2Cl/H+-exchanger ClC-5 severely impairs endocytosis in renal proximal tubules and underlies the human kidney stone disorder Dent''s disease. In heterologous expression systems, interaction of the E3 ubiquitin ligases WWP2 and Nedd4-2 with a “PY-motif” in the cytoplasmic C terminus of ClC-5 stimulates its internalization from the plasma membrane and may influence receptor-mediated endocytosis. We asked whether this interaction is relevant in vivo and generated mice in which the PY-motif was destroyed by a point mutation. Unlike ClC-5 knock-out mice, these knock-in mice displayed neither low molecular weight proteinuria nor hyperphosphaturia, and both receptor-mediated and fluid-phase endocytosis were normal. The abundances and localizations of the endocytic receptor megalin and of the Na+-coupled phosphate transporter NaPi-2a (Npt2) were not changed, either. To explore whether the discrepancy in results from heterologous expression studies might be due to heteromerization of ClC-5 with ClC-3 or ClC-4 in vivo, we studied knock-in mice additionally deleted for those related transporters. Disruption of neither ClC-3 nor ClC-4 led to proteinuria or impaired proximal tubular endocytosis by itself, nor in combination with the PY-mutant of ClC-5. Endocytosis of cells lacking ClC-5 was not impaired further when ClC-3 or ClC-4 was additionally deleted. We conclude that ClC-5 is unique among CLC proteins in being crucial for proximal tubular endocytosis and that PY-motif-dependent ubiquitylation of ClC-5 is dispensable for this role.  相似文献   
206.
Previous work has proposed rhoptry protein 2 (ROP2) as the physical link that tethers host mitochondria to the parasitophorous vacuole membrane (PVM) surrounding the intracellular parasite, Toxoplasma gondii. A recent analysis of the ROP2 structure, however, raised questions about this model. To determine whether ROP2 is necessary, we created a parasite line that lacks the entire ROP2 locus consisting of the three closely related genes, ROP2a, ROP2b and ROP8. We show that this knockout mutant retains the ability to recruit host mitochondria in a manner that is indistinguishable from the parental strain, re-opening the question of which molecules mediate this association.  相似文献   
207.
The proteins from the thioredoxin family are crucial actors in redox signaling and the cellular response to oxidative stress. The major intracellular source for oxygen radicals are the components of the respiratory chain in mitochondria. Here, we show that the mitochondrial 2-Cys peroxiredoxin (Prx3) is not only substrate for thioredoxin 2 (Trx2), but can also be reduced by glutaredoxin 2 (Grx2) via the dithiol reaction mechanism. Grx2 reduces Prx3 exhibiting catalytic constants (K(m), 23.8 μmol·liter(-1); V(max), 1.2 μmol·(mg·min)(-1)) similar to Trx2 (K(m), 11.2 μmol·liter(-1); V(max), 1.1 μmol·(mg·min)(-1)). The reduction of the catalytic disulfide of the atypical 2-Cys Prx5 is limited to the Trx system. Silencing the expression of either Trx2 or Grx2 in HeLa cells using specific siRNAs did not change the monomer:dimer ratio of Prx3 detected by a specific 2-Cys Prx redox blot. Only combined silencing of the expression of both proteins led to an accumulation of oxidized protein. We further demonstrate that the distribution of Prx3 in different mouse tissues is either linked to the distribution of Trx2 or Grx2. These results introduce Grx2 as a novel electron donor for Prx3, providing further insights into pivotal cellular redox signaling mechanisms.  相似文献   
208.
Corticotroph-derived glycoprotein hormone (CGH), also referred to as thyrostimulin, is a noncovalent heterodimer of glycoprotein hormone alpha 2 (GPHA2) and glycoprotein hormone beta 5 (GPHB5). Here, we demonstrate that both subunits of CGH are expressed in the corticotroph cells of the human anterior pituitary, as well as in skin, retina, and testis. CGH activates the TSH receptor (TSHR); (125)I-CGH binding to cells expressing TSHR is saturable, specific, and of high affinity. In competition studies, unlabeled CGH is a potent competitor for (125)I-TSH binding, whereas unlabeled TSH does not compete for (125)I-CGH binding. Binding and competition analyses are consistent with the presence of two binding sites on the TSHR transfected baby hamster kidney cells, one that can interact with either TSH or CGH, and another that binds CGH alone. Transgenic overexpression of GPHB5 in mice produces elevations in serum T(4) levels, reductions in body weight, and proptosis. However, neither transgenic overexpression of GPHA2 nor deletion of GPHB5 produces an overt phenotype in mice. In vivo administration of CGH to mice produces a dose-dependent hyperthyroid phenotype including elevation of T(4) and hypertrophy of cells within the inner adrenal cortex. However, the distinctive expression patterns and binding characteristics of CGH suggest that it has endogenous biological roles that are discrete from those of TSH.  相似文献   
209.
In this study we investigated the dynamic behavior of the chimeric cell-penetrating peptide transportan in membrane-like environments using NMR. Backbone amide 15N spin relaxation was used to investigate the dynamics in two bicelles: neutral DMPC bicelles and partly negatively charged DMPG-containing bicelles. The structure of the peptide as judged from CD and chemical shifts is similar in the two cases. Both the overall motion as well as the local dynamics is, however, different in the two types of bicelles. The overall dynamics of the peptide is significantly slower in the partly negatively charged bicelle environment, as evidenced by longer global correlation times for all measured sites. The local motion, as judged from generalized order parameters, is for all sites in the peptide more restricted when bound to negatively charged bicelles than when bound to neutral bicelles (increase in S 2 is on average 0.11 ± 0.07). The slower dynamics of transportan in charged membrane model systems cause significant line broadening in the proton NMR spectrum, which in certain cases limits the observation of 1H signals for transportan when bound to the membrane. The effect of transportan on DMPC and DHPC motion in zwitterionic bicelles was also investigated, and the motion of both components in the bicelle was found to be affected.Electronic Supplementary Material Supplementary material is available for this article at http://dx.doi.org/10.1007/s10858-006-9008-y and is accessible for authorized users.  相似文献   
210.
We report the cloning of a Trypanosoma cruzi gene encoding a solanesyl-diphosphate synthase, TcSPPS. The amino acid sequence (molecular mass approximately 39 kDa) is homologous to polyprenyl-diphosphate synthases from different organisms, showing the seven conserved motifs and the typical hydrophobic profile. TcSPPS preferred geranylgeranyl diphosphate as the allylic substrate. The final product, as determined by TLC, had nine isoprene units. This suggests that the parasite synthesizes mainly ubiquinone-9 (UQ-9), as described for Trypanosoma brucei and Leishmania major. In fact, that was the length of the ubiquinone extracted from epimastigotes, as determined by high-performance liquid chromatography. Expression of TcSPPS was able to complement an Escherichia coli ispB mutant. A punctuated pattern in the cytoplasm of the parasite was detected by immunofluorescence analysis with a specific polyclonal antibody against TcSPPS. An overlapping fluorescence pattern was observed using an antibody directed against the glycosomal marker pyruvate phosphate dikinase, suggesting that this step of the isoprenoid biosynthetic pathway is located in the glycosomes. Co-localization in glycosomes was confirmed by immunogold electron microscopy and subcellular fractionation. Because UQ has a central role in energy production and in reoxidation of reduction equivalents, TcSPPS is promising as a new chemotherapeutic target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号