首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1036篇
  免费   99篇
  国内免费   1篇
  1136篇
  2023年   4篇
  2022年   14篇
  2021年   15篇
  2020年   10篇
  2019年   17篇
  2018年   29篇
  2017年   22篇
  2016年   37篇
  2015年   64篇
  2014年   57篇
  2013年   78篇
  2012年   91篇
  2011年   96篇
  2010年   44篇
  2009年   49篇
  2008年   75篇
  2007年   82篇
  2006年   68篇
  2005年   50篇
  2004年   59篇
  2003年   69篇
  2002年   55篇
  2001年   7篇
  2000年   3篇
  1999年   7篇
  1998年   9篇
  1997年   11篇
  1996年   5篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
排序方式: 共有1136条查询结果,搜索用时 15 毫秒
11.
Climate change is predicted to increase the risk of drought in many temperate agroecosystems. While the impact of drought on aboveground plant‐herbivore‐natural enemy interactions has been studied, little is known about its effects on belowground tritrophic interactions and root defense chemistry. We investigated the effects of low soil moisture on the interaction between maize, the western corn rootworm (WCR, Diabrotica virgifera), and soil‐borne natural enemies of WCR. In a manipulative field experiment, reduced soil moisture and WCR attack reduced plant performance and increased benzoxazinoid levels. The negative effects of WCR on cob dry weight and silk emergence were strongest at low moisture levels. Inoculation with entomopathogenic nematodes (EPNs, Heterorhabditis bacteriophora) was ineffective in controlling WCR, and the EPNs died rapidly in the warm and dry soil. However, ants of the species Solenopsis molesta invaded the experiment, were more abundant in WCR‐infested pots and predated WCR independently of soil moisture. Ant presence increased root and shoot biomass and was associated with attenuated moisture‐dependent effects of WCR on maize cob weight. Our study suggests that apart from directly reducing plant performance, drought can also increase the negative effects of root herbivores such as WCR. It furthermore identifies S. molesta as a natural enemy of WCR that can protect maize plants from the negative impact of herbivory under drought stress. Robust herbivore natural enemies may play an important role in buffering the impact of climate change on plant‐herbivore interactions.  相似文献   
12.
13.
Natural variation in DNA sequence contributes to individual differences in quantitative traits. While multiple studies have shown genetic control over gene expression variation, few additional cellular traits have been investigated. Here, we investigated the natural variation of NADPH oxidase-dependent hydrogen peroxide (H2O2 release), which is the joint effect of reactive oxygen species (ROS) production, superoxide metabolism and degradation, and is related to a number of human disorders. We assessed the normal variation of H2O2 release in lymphoblastoid cell lines (LCL) in a family-based 3-generation cohort (CEPH-HapMap), and in 3 population-based cohorts (KORA, GenCord, HapMap). Substantial individual variation was observed, 45% of which were associated with heritability in the CEPH-HapMap cohort. We identified 2 genome-wide significant loci of Hsa12 and Hsa15 in genome-wide linkage analysis. Next, we performed genome-wide association study (GWAS) for the combined KORA-GenCord cohorts (n = 279) using enhanced marker resolution by imputation (>1.4 million SNPs). We found 5 significant associations (p<5.00×10−8) and 54 suggestive associations (p<1.00×10−5), one of which confirmed the linked region on Hsa15. To replicate our findings, we performed GWAS using 58 HapMap individuals and ∼2.1 million SNPs. We identified 40 genome-wide significant and 302 suggestive SNPs, and confirmed genome signals on Hsa1, Hsa12, and Hsa15. Genetic loci within 900 kb from the known candidate gene p67phox on Hsa1 were identified in GWAS in both cohorts. We did not find replication of SNPs across all cohorts, but replication within the same genomic region. Finally, a highly significant decrease in H2O2 release was observed in Down Syndrome (DS) individuals (p<2.88×10−12). Taken together, our results show strong evidence of genetic control of H2O2 in LCL of healthy and DS cohorts and suggest that cellular phenotypes, which themselves are also complex, may be used as proxies for dissection of complex disorders.  相似文献   
14.
Among other targets, the protein lysine methyltransferase PR‐Set7 induces histone H4 lysine 20 monomethylation (H4K20me1), which is the substrate for further methylation by the Suv4‐20h methyltransferase. Although these enzymes have been implicated in control of replication origins, the specific contribution of H4K20 methylation to DNA replication remains unclear. Here, we show that H4K20 mutation in mammalian cells, unlike in Drosophila, partially impairs S‐phase progression and protects from DNA re‐replication induced by stabilization of PR‐Set7. Using Epstein–Barr virus‐derived episomes, we further demonstrate that conversion of H4K20me1 to higher H4K20me2/3 states by Suv4‐20h is not sufficient to define an efficient origin per se, but rather serves as an enhancer for MCM2‐7 helicase loading and replication activation at defined origins. Consistent with this, we find that Suv4‐20h‐mediated H4K20 tri‐methylation (H4K20me3) is required to sustain the licensing and activity of a subset of ORCA/LRWD1‐associated origins, which ensure proper replication timing of late‐replicating heterochromatin domains. Altogether, these results reveal Suv4‐20h‐mediated H4K20 tri‐methylation as a critical determinant in the selection of active replication initiation sites in heterochromatin regions of mammalian genomes.  相似文献   
15.
In the present study, we investigated the implication of transient receptor potential vanilloid (TRPV)-related channels in the 5-hydroxytryptamine (5-HT)-induced both intracellular calcium response and mitogenic effect in rat pulmonary arterial smooth muscle cells (PASMC). Using microspectrofluorimetry (indo-1 as Ca(2+) fluorescent probe) and the patch-clamp technique (in whole-cell configuration), we found that 5-HT (10 microM) induced a transient intracellular calcium mobilization followed by a sustained calcium entry. This latter was partly blocked by an inhibitor of cytochrome P450 epoxygenase (17-ODYA) and insensitive to cyclo-oxygenase and lipoxygenase inhibitors (indomethacin and CDC), suggesting the involvement of arachidonic acid metabolization by cytochrome P450 epoxygenase. This calcium influx was also sensitive to Ni(2+) and to ruthenium red, a TRPV channel blocker, and mimicked by 4alpha-phorbol-12,13-didecanoate (4alpha-PDD), a TRPV4 channel agonist. In patched PASMC, 5-HT and 4alpha-PDD-activated TRPV4-like ruthenium red sensitive currents with typical characteristics. Furthermore, 5-HT induced a ruthenium red sensitive increase in BrdU incorporation levels in PASMC. The present study provides evidence that 5-HT activates a TRPV4-like current, potentially involved in PASMC proliferation. The signalling pathway between proliferation and ion channel activation remains to be determined and may represent a molecular target for the treatment of vascular diseases such as pulmonary hypertension.  相似文献   
16.

Background  

Polymorphisms were investigated within the ZmPox3 maize peroxidase gene, possibly involved in lignin biosynthesis because of its colocalization with a cluster of QTL related to lignin content and cell wall digestibility. The purpose of this study was to identify, on the basis of 37 maize lines chosen for their varying degrees of cell wall digestibility and representative of temperate regions germplasm, ZmPox3 haplotypes or individual polymorphisms possibly associated with digestibility.  相似文献   
17.
18.
Climate change will profoundly alter the physiology and ecology of plants, insect herbivores, and their natural enemies, resulting in strong effects on multitrophic interactions. Yet, manipulative studies that investigate the direct combined impacts of changes in CO2, temperature, and precipitation on the third trophic level remain rare. Here, we assessed how exposure to elevated CO2, increased temperature, and decreased precipitation directly affect the performance and predation success of species from four major groups of herbivore natural enemies: an entomopathogenic nematode, a wolf spider, a ladybug, and a parasitoid wasp. A four‐day exposure to future climatic conditions (RCP 8.5), entailing a 28% decrease in precipitation, a 3.4°C raise in temperature, and a 400 ppm increase in CO2 levels, slightly reduced the survival of entomopathogenic nematodes, but had no effect on the survival of other species. Predation success was not negatively affected in any of the tested species, but it was even increased for wolf spiders and entomopathogenic nematodes. Factorial manipulation of climate variables revealed a positive effect of reduced soil moisture on nematode infectivity, but not of increased temperature or elevated CO2. These results suggest that natural enemies of herbivores may be well adapted to short‐term changes in climatic conditions. These findings provide mechanistic insights that will inform future efforts to disentangle the complex interplay of biotic and abiotic factors that drive climate‐dependent changes in multitrophic interaction networks.  相似文献   
19.
Aortic smooth muscle cell release of matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) has been implicated in aortic aneurysm pathogenesis, but proximal modulation of release is poorly understood. Extracellular nucleotides regulate vascular smooth muscle cell metabolism in response to physiochemical stresses, but nucleotide modulation of MMP and/or TIMP release has not been reported. We hypothesized that nucleotides modulate MMP-2 and TIMP-2 release from human aortic smooth muscle cells (HASMCs) via distinct purinergic receptors and signaling pathways. We exposed HASMCs to exogenous ATP and other nucleotides with and without interleukin-1beta (IL-1beta). HASMCs were pretreated in some experiments with apyrase, which degrades ATP, and inhibitors of ERK1/2, JNK, and p38 MAPK. MMP-2 and TIMP-2 released into supernatant were assessed using ELISA and Western blotting. ATP, adenosine, and UTP significantly stimulated MMP-2 release in the presence of IL-1beta (300 nM ATP: 181 +/- 22%, P = 0.003; 30 microm adenosine: 244 +/- 150%, P = 0.001; and 200 microm UTP: 153 +/- 40%, P = 0.015; vs. 100% constitutive). ATP also stimulated MMP-2 release in the absence of IL-1beta (100 microm ATP: 148 +/- 38% vs. 100% constitutive). Apyrase significantly reduced ATP-stimulated MMP-2 release (apyrase + 500 nM ATP: 59 +/- 3% vs. 124 +/- 7% with 500 nM ATP). Rank-order agonist potency for MMP-2 release was consistent with ATP activation of PAY and PAY receptors. ATP induced phosphorylation of intracellular JNK, and inhibition of the JNK pathway blocked ATP-stimulated MMP-2 release, indicating signaling via this pathway. Nucleotides are thus novel stimulants of MMP-2 release from HASMCs and may provide a mechanistic link between physiochemical stress in the aorta and aneurysms, especially in the context of inflammation.  相似文献   
20.
Fur is a bacterial regulator using iron as a cofactor to bind to specific DNA sequences. This protein exists in solution as several oligomeric states, of which the dimer is generally assumed to be the biologically relevant one. We describe the equilibria that exist between dimeric Escherichia coli Fur and higher oligomers. The dissociation constant for the dimer-tetramer equilibrium is estimated to be in the millimolar range. Oligomerization is enhanced at low ionic strength and pH. The as-isolated monomeric form of Fur is not in equilibrium with the dimer and contains two disulfide bridges (C92-C95 and C132-C137). Binding of the monomer to DNA is metal-dependent and sequence specific with an apparent affinity 5.5 times lower than that of the dimer. Size exclusion chromatography, EDC cross-linking, and CD spectroscopy show that reconstitution of the dimer from the monomer requires reduction of the disulfide bridges and coordination of Zn2+. Reduction of the disulfide bridges or Zn2+ alone does not promote dimerization. EDC and DMA cross-links reveal that the N-terminal NH2 group of one subunit is in an ionic interaction with acidic residues of the C-terminal tail and close to Lys76 and Lys97 of the other. Furthermore, the yields of cross-link drastically decrease upon binding of metal in the activation site, suggesting that the N-terminus is involved in the conformational change. Conversely, oxidizing reagents, H2O2 or diamide, disrupt the dimeric structure leading to monomer formation. These results establish that coordination of the zinc ion and the redox state of the cysteines are essential for holding E. coli Fur in a dimeric state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号