首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   53篇
  2022年   4篇
  2020年   7篇
  2019年   7篇
  2018年   5篇
  2017年   6篇
  2016年   8篇
  2015年   4篇
  2014年   8篇
  2013年   4篇
  2012年   11篇
  2011年   14篇
  2010年   8篇
  2009年   9篇
  2008年   13篇
  2007年   18篇
  2006年   24篇
  2005年   9篇
  2004年   14篇
  2003年   11篇
  2002年   12篇
  2001年   17篇
  2000年   13篇
  1999年   10篇
  1998年   10篇
  1997年   9篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   9篇
  1990年   6篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   6篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1954年   1篇
  1936年   1篇
排序方式: 共有352条查询结果,搜索用时 15 毫秒
61.
Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients.  相似文献   
62.
63.
Summary Changes in the pattern of microtubules during the cell cycle of the hepaticReboulia hemisphaerica (Bryophyta) were studied by indirect immunofluorescence using conventional and confocal laser scanning microscopy (CLSM). The first indication that a cell is preparing for division is fusiform shaping of the nucleus accompanied by the appearance of well-defined polar organizers (POs) at the future spindle poles. Microtubules emanating from the POs ensheath the nucleus and eventually develop into the half-spindles of mitosis. Some of the microtubules from each PO pass tangential to the nucleus and interact in the region of the future mitotic equator. A preprophase band (PPB) forms in this region later in prophase and coexists with the prophase spindle. Thus, the plane of division appears to be determined by interaction of opposing arrays of microtubules emanating from POs. Prometaphase is marked by disappearance of the POs, loss of astral microtubules, and conversion of the fusiform spindle of prophase to a truncated, barrel-shaped spindle more typical of higher plants. Restoration of cortical microtubules in daughter cell occurs on the cell side distal to the new cell plate, but nucleation of microtubules is associated with the nuclear envelope and not with organized POs. At the next division POs appear at opposite poles of preprophase nuclei with no evidence of division and migration that is characteristic of cells with centriolar centrosomes. These data lend additional support for the view that mitosis in hepatics is transitional between green algae and higher plants.Abbreviations AMS axial microtubule system - CLSM confocal laser scanning microscopy - MTOC microtubule organizing center - PO polar organizer - PPB preprophase band of microtubules - QMS quadripolar microtubule system - TEM transmission electron microscopy  相似文献   
64.
Summary Preprophase in the monoplastidic mitotic cells ofPhaeoceros andNotothylas is characterized by the establishment of a division site in the absence of a typical preprophase band. The future cytokinetic plane is predicted by plastid orientation and development of an elaborate preprophasic microtubule system perpendicular to the division plane. Division of the single plastid is initiated early in preprophase and the constricting plastid migrates to a position perpendicular to the future plane of division. Plastid orientation assures that division of the plastid by mid-constriction will result in distribution of a plastid to each daughter cell. Microtubules parallel the long axis of the plastid and are most numerous adjacent to the nucleus which becomes elongated in the future spindle axis. We conclude that the division site is a fundamental component of the cytokinetic apparatus involved in the determination of cleavage plane prior to nuclear division.  相似文献   
65.
Methods were developed for the formation of protoplasts and spheroplasts of gastrointestinal strains of Lactobacillus reuteri, Lactobacillus gasseri, and Lactobacillus salivarius. Attempts to regenerate vegetative cells from protoplasts were not successful, but spheroplasts could be regenerated consistently for five of six strains.  相似文献   
66.
R. C. Brown  B. E. Lemmon 《Protoplasma》1992,167(3-4):183-192
Summary The unequal first mitosis in pollen ofPhalaenopsis results in a small generative cell cut off at the distal surface of the microspore and a large vegetative cell. No preprophase band of microtubules is present, but polarization of the microspore prior to this critical division is well marked. A generative pole microtubule system (GPMS) marks the path of nuclear migration to the distal surface, and the organelles become unequally distributed. Mitochondria, plastids and dictyosomes are concentrated around the vegetative pole in the center of the microspore and are almost totally excluded from the generative pole. The prophase spindle is multipolar with a dominant convergence center at the GPMS site. The metaphase spindle is disc-shaped with numerous minipoles terminating in broad polar regions. In anaphase, the spindle becomes cone-shaped as the spindle elongates and the vegetative pole narrows. These changes in spindle architecture are reflected in the initial shaping of the telophase chromosome groups. F-actin is coaligned with microtubules in the spindle and is also seen as a network in the cytoplasm. An outstanding feature of orchid pollen mitosis is the abundance of endoplasmic reticulum (ER) associated with the spindle. ER extends along the kinetochore fibers, and the numerous foci of spindle fibers at the broad poles terminate in a complex of ER.Abbreviations CLSM confocal laser scanning microscope/microscopy - DMSO dimethyl sulfoxide - ER endoplasmic reticulum - FITC fluorescein isothiocyanate - GPMS generative pole microtubule system - MBS m-maleimidobenzoic acidN-hydroxysuccinimide ester - PPB preprophase band of microtubules - RhPh rhodamine palloidin - TEM transmission electron microscope/microscopy  相似文献   
67.
Coat protein complexes contain an inner shell that sorts cargo and an outer shell that helps deform the membrane to give the vesicle its shape. There are three major types of coated vesicles in the cell: COPII, COPI, and clathrin. The COPII coat complex facilitates vesicle budding from the endoplasmic reticulum (ER), while the COPI coat complex performs an analogous function in the Golgi. Clathrin-coated vesicles mediate traffic from the cell surface and between the trans-Golgi and endosome. While the assembly and structure of these coat complexes has been extensively studied, the disassembly of COPII and COPI coats from membranes is less well understood. We describe a proteomic and genetic approach that connects the J-domain chaperone auxilin, which uncoats clathrin-coated vesicles, to COPII and COPI coat complexes. Consistent with a functional role for auxilin in the early secretory pathway, auxilin binds to COPII and COPI coat subunits. Furthermore, ER–Golgi and intra-Golgi traffic is delayed at 15°C in swa2Δ mutant cells, which lack auxilin. In the case of COPII vesicles, we link this delay to a defect in vesicle fusion. We propose that auxilin acts as a chaperone and/or uncoating factor for transport vesicles that act in the early secretory pathway.  相似文献   
68.
The green anole (Anolis carolinensis) is a lizard widespread throughout the southeastern United States and is a model organism for the study of reproductive behavior, physiology, neural biology, and genomics. Previous phylogeographic studies of A. carolinensis using mitochondrial DNA and small numbers of nuclear loci identified conflicting and poorly supported relationships among geographically structured clades; these inconsistencies preclude confident use of A. carolinensis evolutionary history in association with morphological, physiological, or reproductive biology studies among sampling localities and necessitate increased effort to resolve evolutionary relationships among natural populations. Here, we used anchored hybrid enrichment of hundreds of genetic markers across the genome of A. carolinensis and identified five strongly supported phylogeographic groups. Using multiple analyses, we produced a fully resolved species tree, investigated relative support for each lineage across all gene trees, and identified mito‐nuclear discordance when comparing our results to previous studies. We found fixed differences in only one clade—southern Florida restricted to the Everglades region—while most polymorphisms were shared between lineages. The southern Florida group likely diverged from other populations during the Pliocene, with all other diversification during the Pleistocene. Multiple lines of support, including phylogenetic relationships, a latitudinal gradient in genetic diversity, and relatively more stable long‐term population sizes in southern phylogeographic groups, indicate that diversification in A. carolinensis occurred northward from southern Florida.  相似文献   
69.
70.
Sequence specificity in the dimerization of transmembrane alpha-helices.   总被引:25,自引:0,他引:25  
While several reports have suggested a role for helix-helix interactions in membrane protein oligomerization, there are few direct biochemical data bearing on this subject. Here, using mutational analysis, we show that dimerization of the transmembrane alpha-helix of glycophorin A in a detergent environment is spontaneous and highly specific. Very subtle changes in the side-chain structure at certain sensitive positions disrupt the helix-helix association. These sensitive positions occur at approximately every 3.9 residues along the helix, consistent with their comprising the interface of a closely fit transmembranous supercoil of alpha-helices. By contrast with other reported cases of interactions between transmembrane helices, the set of interfacial residues in this case contains no highly polar groups. Amino acids with aliphatic side chains define much of the interface, indicating that precise packing interactions between the helices may provide much of the energy for association. These data highlight the potential general importance of specific interactions between the hydrophobic anchors of integral membrane proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号