全文获取类型
收费全文 | 298篇 |
免费 | 49篇 |
专业分类
347篇 |
出版年
2022年 | 3篇 |
2020年 | 7篇 |
2019年 | 7篇 |
2018年 | 5篇 |
2017年 | 6篇 |
2016年 | 8篇 |
2015年 | 7篇 |
2014年 | 9篇 |
2013年 | 4篇 |
2012年 | 13篇 |
2011年 | 14篇 |
2010年 | 9篇 |
2009年 | 12篇 |
2008年 | 13篇 |
2007年 | 16篇 |
2006年 | 23篇 |
2005年 | 10篇 |
2004年 | 11篇 |
2003年 | 9篇 |
2002年 | 13篇 |
2001年 | 15篇 |
2000年 | 13篇 |
1999年 | 9篇 |
1998年 | 7篇 |
1997年 | 9篇 |
1996年 | 5篇 |
1995年 | 4篇 |
1994年 | 5篇 |
1993年 | 3篇 |
1992年 | 4篇 |
1991年 | 10篇 |
1990年 | 6篇 |
1989年 | 4篇 |
1988年 | 6篇 |
1987年 | 3篇 |
1986年 | 3篇 |
1985年 | 5篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1982年 | 5篇 |
1981年 | 6篇 |
1980年 | 5篇 |
1979年 | 2篇 |
1978年 | 3篇 |
1977年 | 1篇 |
1975年 | 2篇 |
1974年 | 3篇 |
1973年 | 1篇 |
1954年 | 1篇 |
1936年 | 1篇 |
排序方式: 共有347条查询结果,搜索用时 15 毫秒
61.
Ophioglossum petiolatum . Unlike Angiopteris (Marattiales), which is monoplastidic, Ophioglossum undergoes polyplastidic meiosis like members of the fern-seed plant clade. The meiotic spindle is distinctly multipolar in
origin and is consolidated into a bipolar spindle that is variously twisted and curved to accommodate the large number of
chromosomes. Although a phragmoplast forms after first meiosis, no wall is deposited. Instead, an organelle band consisting
of intermingled plastids and mitochondria is formed in the equatorial region between the dyad domains. Following second meiosis,
a complex of phragmoplasts forms among sister and non-sister nuclei. Cell plates are deposited first between sister nuclei
and then in the region of the organelle band resulting in a tetrad of spores each with a equal allotment of organelles.
Received 30 January 2001/ Accepted in revised form 24 April 2001 相似文献
62.
63.
Summary Studies of monoplastidic mitosis in hornworts (Bryophyta) using transmission electron microscopy and indirect immunofluorescence staining of microtubules have revealed that two mutually perpendicular microtubule systems predict division polarity in preprophase. Events of cytoplasmic reorganization in preparation for division occur in the following order: migration of the single plastid to a position perpendicular to the division site, constriction of the plastid where its midpoint intersects the division site, development of an axial system of microtubules parallel to the elongating plastid isthmus, and appearance of an atypical preprophase band of microtubules (PPB). The PPB is asymmetrical with a tight band of microtubules on the side over the plastid isthmus and a broad band of widely spaced microtubules over the nucleus. The axial system contributes directly to development of the spindle. In prometaphase, the axial system separates at the equator and additional microtubule bundles project from polar regions, creating two opposing halfspindles. The PPB is still present during asymmetrical organization of the spindle and microtubules extending from the broad portion of the PPB to poles appear to be incorporated into the developing spindle. Dynamic changes in the microtubular cytoskeleton demonstrate (1) intimate relationship of plastid and nuclear division, (2) contribution of preprophase/prophase microtubule systems to spindle development in monoplastidic cells, and (3) dynamic reorientation of microtubules from one system to another. 相似文献
64.
65.
Food storage tissue in the seeds of gymnosperms is female gametophyte (megagametophyte) that develops before fertilization, whereas, in seeds of angiosperms, food is stored as endosperm initiated by double fertilization. The megagametophyte is haploid, and endosperm is usually triploid, at least initially. Despite differences in origin, ploidy level, and developmental trigger, the early events of female gametophyte development in ginkgo are very similar to nuclear endosperm development in the seeds of angiosperms. In both, development begins as a single cell that undergoes multiple mitoses without cytokinesis, to produce a large syncytium. This study provided evidence that microtubule involvement in organization of the syncytium into nuclear cytoplasmic domains (NCDs) via nuclear-based radial microtubule systems is a critical developmental feature in the ginkgo megagametophyte, as it is in endosperm. Once the initial anticlinal walls have been deposited at the boundaries of NCDs, cellularization proceeds by the process of alveolation. Continued unidirectional growth of the alveolar walls is an outstanding example of polar cytokinesis. Ginkgo megagametophyte development appears to occur uniformly throughout the entire chamber, whereas nuclear type endosperm usually exhibits distinct developmental domains. These observations suggest that there is a fundamental pathway for the development and cellularization of syncytia in seed development. 相似文献
66.
Genomic data detect corresponding signatures of population size change on an ecological time scale in two salamander species 下载免费PDF全文
Schyler O. Nunziata Stacey L. Lance David E. Scott Emily Moriarty Lemmon David W. Weisrock 《Molecular ecology》2017,26(4):1060-1074
Understanding the demography of species over recent history (e.g. <100 years) is critical in studies of ecology and evolution, but records of population history are rarely available. Surveying genetic variation is a potential alternative to census‐based estimates of population size, and can yield insight into the demography of a population. However, to assess the performance of genetic methods, it is important to compare their estimates of population history to known demography. Here, we leveraged the exceptional resources from a wetland with 37 years of amphibian mark–recapture data to study the utility of genetically based demographic inference on salamander species with documented population declines (Ambystoma talpoideum) and expansions (A. opacum), patterns that have been shown to be correlated with changes in wetland hydroperiod. We generated ddRAD data from two temporally sampled populations of A. opacum (1993, 2013) and A. talpoideum (1984, 2011) and used coalescent‐based demographic inference to compare alternate evolutionary models. For both species, demographic model inference supported population size changes that corroborated mark–recapture data. Parameter estimation in A. talpoideum was robust to our variations in analytical approach, while estimates for A. opacum were highly inconsistent, tempering our confidence in detecting a demographic trend in this species. Overall, our robust results in A. talpoideum suggest that genome‐based demographic inference has utility on an ecological scale, but researchers should also be cognizant that these methods may not work in all systems and evolutionary scenarios. Demographic inference may be an important tool for population monitoring and conservation management planning. 相似文献
67.
Yu JW Mendrola JM Audhya A Singh S Keleti D DeWald DB Murray D Emr SD Lemmon MA 《Molecular cell》2004,13(5):677-688
Pleckstrin homology (PH) domains are small protein modules known for their ability to bind phosphoinositides and to drive membrane recruitment of their host proteins. We investigated phosphoinositide binding (in vitro and in vivo) and subcellular localization, and we modeled the electrostatic properties for all 33 PH domains encoded in the S. cerevisiae genome. Only one PH domain (from Num1p) binds phosphoinositides with high affinity and specificity. Six bind phosphoinositides with moderate affinity and little specificity and are membrane targeted in a phosphoinositide-dependent manner. Although all of the remaining 26 yeast PH domains bind phosphoinositides very weakly or not at all, three were nonetheless efficiently membrane targeted. Our proteome-wide analysis argues that membrane targeting is important for only approximately 30% of yeast PH domains and is defined by binding to both phosphoinositides and other targets. These findings have significant implications for understanding the function of proteins that contain this common domain. 相似文献
68.
Summary The unequal first mitosis in pollen ofPhalaenopsis results in a small generative cell cut off at the distal surface of the microspore and a large vegetative cell. No preprophase band of microtubules is present, but polarization of the microspore prior to this critical division is well marked. A generative pole microtubule system (GPMS) marks the path of nuclear migration to the distal surface, and the organelles become unequally distributed. Mitochondria, plastids and dictyosomes are concentrated around the vegetative pole in the center of the microspore and are almost totally excluded from the generative pole. The prophase spindle is multipolar with a dominant convergence center at the GPMS site. The metaphase spindle is disc-shaped with numerous minipoles terminating in broad polar regions. In anaphase, the spindle becomes cone-shaped as the spindle elongates and the vegetative pole narrows. These changes in spindle architecture are reflected in the initial shaping of the telophase chromosome groups. F-actin is coaligned with microtubules in the spindle and is also seen as a network in the cytoplasm. An outstanding feature of orchid pollen mitosis is the abundance of endoplasmic reticulum (ER) associated with the spindle. ER extends along the kinetochore fibers, and the numerous foci of spindle fibers at the broad poles terminate in a complex of ER.Abbreviations CLSM
confocal laser scanning microscope/microscopy
- DMSO
dimethyl sulfoxide
- ER
endoplasmic reticulum
- FITC
fluorescein isothiocyanate
- GPMS
generative pole microtubule system
- MBS
m-maleimidobenzoic acidN-hydroxysuccinimide ester
- PPB
preprophase band of microtubules
- RhPh
rhodamine palloidin
- TEM
transmission electron microscope/microscopy 相似文献
69.
70.
Cristina T Fonseca Daniela M Amaral Márcia G Ribeiro Izabel CR Beserra Marília M Guimarães 《BMC endocrine disorders》2005,5(1):1-6