首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   12篇
  2021年   5篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   8篇
  2012年   14篇
  2011年   17篇
  2010年   2篇
  2009年   11篇
  2008年   7篇
  2007年   11篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   6篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1960年   1篇
  1942年   1篇
  1940年   1篇
排序方式: 共有179条查询结果,搜索用时 15 毫秒
51.

Background and Aims

The familial Mediterranean fever (FMF) gene (MEFV) encodes pyrin, a major regulator of the inflammasome platform controlling caspase-1 activation and IL-1β processing. Pyrin has been shown to interact with the gene product of NLRP3, NALP3/cryopyrin, also an important active member of the inflammasome. The NLRP3 region was recently reported to be associated with Crohn''s disease (CD) susceptibility. We therefore sought to evaluate MEFV as an inflammatory bowel disease (IBD) susceptibility gene.

Methodology and Results

MEFV colonic mucosal gene expression was significantly increased in experimental colitis mice models (TNBS p<0.0003; DSS p<0.006), in biopsies from CD (p<0.02) and severe ulcerative colitis (UC) patients (p<0.008). Comprehensive genetic screening of the MEFV region in the Belgian exploratory sample set (440 CD trios, 137 UC trios, 239 CD cases, 96 UC cases, and 107 healthy controls) identified SNPs located in the MEFV 5′ haplotype block that were significantly associated with UC (rs224217; p = 0.003; A allele frequency: 56% cases, 45% controls), while no CD associations were observed. Sequencing and subsequent genotyping of variants located in this associated haplotype block identified three synonymous variants (D102D/rs224225, G138G/rs224224, A165A/rs224223) and one non-synonymous variant (R202Q/rs224222) located in MEFV exon 2 that were significantly associated with UC (rs224222: p = 0.0005; A allele frequency: 32% in cases, 23% in controls). No consistent associations were observed in additional Canadian (256 CD trios, 91 UC trios) and Scottish (495 UC, 370 controls) sample sets. We note that rs224222 showed marginal association (p = 0.012; G allele frequency: 82% in cases, 70% in controls) in the Canadian sample, but with a different risk allele. None of the NLRP3 common variants were associated with UC in the Belgian-Canadian UC samples and no significant interactions were observed between NLRP3 and MEFV that could explain the observed flip-flop of the rs224222 risk allele.

Conclusion

The differences in association levels observed between the sample sets may be a consequence of distinct founder effects or of the relative small sample size of the cohorts evaluated in this study. However, the results suggest that common variants in the MEFV region do not contribute to CD and UC susceptibility.  相似文献   
52.
To date, the contribution of disrupted potentially cis-regulatory conserved non-coding sequences (CNCs) to human disease is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted. As a model for monogenic disease we studied the involvement of genetic changes of CNCs in the cis-regulatory domain of FOXL2 in blepharophimosis syndrome (BPES). Fifty-seven molecularly unsolved BPES patients underwent high-resolution copy number screening and targeted sequencing of CNCs. Apart from three larger distant deletions, a de novo deletion as small as 7.4 kb was found at 283 kb 5′ to FOXL2. The deletion appeared to be triggered by an H-DNA-induced double-stranded break (DSB). In addition, it disrupts a novel long non-coding RNA (ncRNA) PISRT1 and 8 CNCs. The regulatory potential of the deleted CNCs was substantiated by in vitro luciferase assays. Interestingly, Chromosome Conformation Capture (3C) of a 625 kb region surrounding FOXL2 in expressing cellular systems revealed physical interactions of three upstream fragments and the FOXL2 core promoter. Importantly, one of these contains the 7.4 kb deleted fragment. Overall, this study revealed the smallest distant deletion causing monogenic disease and impacts upon the concept of mutation screening in human disease and developmental disorders in particular.  相似文献   
53.
The yeast succinate dehydrogenase (SDH) is a tetramer of non-equivalent subunits, Sdh1p-Sdh4p, that couples the oxidation of succinate to the transfer of electrons to ubiquinone. One of the membrane anchor subunits, Sdh4p, has an unusual 30 amino acid extension at the C-terminus that is not present in SDH anchor subunits of other organisms. We identify Lys-132 in the Sdh4p C-terminal region as necessary for enzyme stability, ubiquinone reduction, and cytochrome b562 assembly in SDH. Five Lys-132 substituted SDH4 genes were constructed by site-directed mutagenesis and introduced into an SDH4 knockout strain. The mutants, K132E, K132G, K132Q, K132R, and K132V were characterized in vivo for respiratory growth and in vitro for ubiquinone reduction, enzyme stability, and cytochrome b562 assembly. Only the K132R substitution, which conserves the positive charge of Lys-132, produces a wild-type enzyme. The remaining four mutants do not affect the ability of SDH to oxidize succinate in the presence of the artificial electron acceptor, phenazine methosulfate, but impair quinone reductase activity, enzyme stability, and heme insertion. Our results suggest that the presence of a positive charge on residue 132 in the C-terminus of Sdh4p is critical for establishing a stable conformation in the SDH hydrophobic domain that is compatible with ubiquinone reduction and cytochrome b562 assembly. In addition, our data suggest that heme does not play an essential role in quinone reduction.  相似文献   
54.
Prohibitins in eukaryotes consist of two subunits (PHB1 and PHB2) that together form a high molecular weight complex in the mitochondrial inner membrane. The evolutionary conservation and the ubiquitous expression in mammalian tissues of the prohibitin complex suggest an important function among eukaryotes. The PHB complex has been shown to play a role in the stabilization of newly synthesized subunits of mitochondrial respiratory enzymes in the yeast Saccharomyces cerevisiae. We have used Caenorhabditis elegans as model system to study the role of the PHB complex during development of a multicellular organism. We demonstrate that prohibitins in C. elegans form a high molecular weight complex in the mitochondrial inner membrane similar to that of yeast and humans. By using RNA-mediated gene inactivation, we show that PHB proteins are essential during embryonic development and are required for somatic and germline differentiation in the larval gonad. We further demonstrate that a deficiency in PHB proteins results in altered mitochondrial biogenesis in body wall muscle cells. This paper reports a strong loss of function phenotype for prohibitin gene inactivation in a multicellular organism and shows for the first time that prohibitins serve an essential role in mitochondrial function during organismal development.  相似文献   
55.
The terminal electron transfer enzyme fumarate reductase has been shown to be composed of a membrane-extrinsic catalytic dimer of 69- and 27-kilodalton (kd) subunits and a membrane-intrinsic anchor portion of 15- and 13-kd subunits. We prepared inverted membrane vesicles from a strain carrying the frd operon on a multicopy plasmid. When grown anaerobically on fumarate-containing medium, the membranes of this strain are highly enriched in fumarate reductase. When negatively stained preparations of these vesicles were examined with an electron microscope, they appeared to be covered with knob-like structures about 4 nm in diameter attached to the membrane by short stalks. Treatment of the membranes with chymotrypsin destroyed the 69-kd subunit, leaving the 27-, 15-, and 13-kd subunits bound to the membrane; these membranes appeared to retain remnants of the structure. Treatment of the membranes with 6 M urea removed the 69- and 27-kd subunits, leaving the anchor polypeptides intact. These vesicles appeared smooth and structureless. A functional four-subunit enzyme and the knob-like structure could be reconstituted by the addition of soluble catalytic subunits to the urea-stripped membranes. In addition to the vesicular structures, we observed unusual tubular structures which were covered with a helical array of fumarate reductase knobs.  相似文献   
56.
57.
Succinate dehydrogenase (SDH) participates in the mitochondrial electron transport chain by oxidizing succinate to fumarate and transferring the electrons to ubiquinone. In yeast, it is composed of a catalytic dimer, comprising the Sdh1p and Sdh2p subunits, and a membrane domain, comprising two smaller hydrophobic subunits, Sdh3p and Sdh4p, which anchor the enzyme to the mitochondrial inner membrane. To investigate the role of the Sdh3p anchor polypeptide in enzyme assembly and catalysis, we isolated and characterized seven mutations in the SDH3 gene. Two mutations are premature truncations of Sdh3p with losses of one or three transmembrane segments. The remaining five are missense mutations that are clustered between amino acids 103 and 117, which are proposed to be located in transmembrane segment II or the matrix-localized loop connecting segments II and III. Three mutations, F103V, H113Q, and W116R, strongly but specifically impair quinone reductase activities but have only minor effects on enzyme assembly. The clustering of the mutations strongly suggests that a ubiquinone-binding site is associated with this region of Sdh3p. In addition, the biphasic inhibition of quinone reductase activity by a dinitrophenol inhibitor supports the hypothesis that two distinct quinone-binding sites are present in the yeast SDH.  相似文献   
58.
In this paper, a sex-dependent matrix game haploid model is investigated. For this model, since the phenotypes of female and male individuals are determined by alleles located at a single locus and are sex dependent, any given genotype corresponds to a strategy pair. Thus, a strategy pair is an ESS if and only if the allele corresponding to this strategy pair cannot be invaded by any mutant allele. We show that an ESS equilibrium must be locally asymptotically stable if it exists.  相似文献   
59.
60.
Summary The subcutaneous implantation of appropriate tissue diaphragms (short, broad glass cylinders) rather regularly induces the formation of bones provided with marrow cavities and junction cartilage plates, in the rat.Bone formation, unlike the development of hemopoietic tissue, can be prevented, under these circumstances, by topical blockade of the phagocyte system with carbon particles.The role of nonspecific topical stress factors, in the induction of such highly specific structural transformations, has been discussed.These investigations were supported by Grant No. A-1641 (R1) from the National Institute of Arthritis and Metabolic Diseases, U.S. Public Health Service, by the U.S. Army Medical Research and Development Command, Department of the Army, Contract No. DA-49-007-MD-2039, and by a grant from theGustavus andLouise Pfeifer Research Foundation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号