首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92636篇
  免费   6750篇
  国内免费   6294篇
  105680篇
  2024年   201篇
  2023年   1254篇
  2022年   2937篇
  2021年   4869篇
  2020年   3193篇
  2019年   4017篇
  2018年   3957篇
  2017年   2868篇
  2016年   4052篇
  2015年   5843篇
  2014年   6889篇
  2013年   7253篇
  2012年   8494篇
  2011年   7741篇
  2010年   4485篇
  2009年   4189篇
  2008年   4781篇
  2007年   4150篇
  2006年   3538篇
  2005年   2825篇
  2004年   2318篇
  2003年   2106篇
  2002年   1698篇
  2001年   1471篇
  2000年   1343篇
  1999年   1407篇
  1998年   820篇
  1997年   892篇
  1996年   814篇
  1995年   775篇
  1994年   673篇
  1993年   570篇
  1992年   683篇
  1991年   535篇
  1990年   455篇
  1989年   333篇
  1988年   278篇
  1987年   219篇
  1986年   185篇
  1985年   210篇
  1984年   124篇
  1983年   118篇
  1982年   54篇
  1981年   23篇
  1980年   20篇
  1979年   19篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
972.
The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H(2)O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems.  相似文献   
973.
从南海深海沉积环境样品中分离到一株编号为00457的真菌,基于形态学特征、ITS和5.8S rDNA序列比对分析,鉴定该菌株为白黄笋顶孢霉( Acrostalagmus luteoalbus).活性研究表明,其代谢产物粗浸膏的卤虫致死活性明显,并具有一定强度的抑菌和DPPH自由基清除活性.此外,研究还发现代谢产物粗浸膏在25-100℃持续加热不超过30 min时,卤虫致死活性成分稳定,但在100C持续加热超过60 min后卤虫致死活性成分显著减少,而一定强度的紫外光照射90 min内则无显著影响.  相似文献   
974.
In this study, we investigated a novel application of matrix solid-phase dispersion (MSPD) methodology for the extraction of endogenous peptides from porcine hypothalamus tissue samples. Several experimental factors of the MSPD procedure were examined. Finally, silica-based octadecyl was chosen as dispersing material and blended with 0.25 g porcine hypothalamus at a ratio of 5, and 10 mL of 60% acetonitrile with 0.2% formic acid in water was chosen as the extraction and elution solvent. This MSPD extraction method was compared to the classic acid extraction method. More peaks were observed in the MSPD extracts (74±5) by MALDI-TOF MS than in acid extracts (34±5). Moreover, 14 potential endogenous peptides were identified in the MSPD extracts after nanoLC-MS/MS analysis, while only 2 endogenous peptides in the acid extracts. These results indicated that MSPD could be employed as a simple and efficient method for the extraction of endogenous peptides from tissues.  相似文献   
975.
Ghrelin is thought to directly exert a protective effect on the cardiovascular system, specifically by promoting vascular endothelial cell function. Our study demonstrates the ability of ghrelin to promote rat CMEC (cardiac microvascular endothelial cell) proliferation, migration and NO (nitric oxide) secretion. CMECs were isolated from left ventricle of adult male Sprague—Dawley rat by enzyme digestion and maintained in endothelial cell medium. Dil‐ac‐LDL (1,1′‐dioctadecyl‐3,3,3′,3′‐ tetramethylindocarbocyanine‐labelled acetylated low‐density lipoprotein) intake assays were used to identify CMECs. Cells were split into five groups and treated with varying concentrations of ghrelin as follows: one control non‐treated group; three ghrelin dosage groups (1×10?9, 1×10?8, 1×10?7 mol/l) and one ghrelin+PI3K inhibitor group (1×10?7 mol/l ghrelin+20 μmol/l LY294002). After 24 h treatment, cell proliferation capability was measured by MTT [3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide] assay and Western blot for PCNA (proliferating cell nuclear antigen) protein expression. Migration of CMECs was detected by transwell assays, and NO secretion of CMECs was measured via nitrate reduction. Protein expression of AKT and phosphorylated AKT in CMECs was measured by Western blot after exposure to various concentrations of ghrelin and the PI3K inhibitor LY294002. Our results indicate that ghrelin significantly enhanced cell growth at concentrations of 10?8 mol/l (0.271±0.041 compared with 0.199±0.021, P=0.03) and 10?7 mol/l (0.296±0.039 compared with 0.199±0.021, P<0.01). However, addition of the PI3K/AKT inhibitor LY294002 inhibited the ghrelin‐mediated enhancement in cell proliferation (0.227±0.042 compared with 0.199±0.021, P=0.15). At a concentration between 10?8 and 10?7 mol/l, ghrelin caused a significant increase in the number of migrated cells compared with the control group (126±9 compared with 98±7, P=0.02; 142±6 compared with 98±7, P<0.01), whereas no such change could be observed in the presence of 20 μmol/l of the PI3K/Akt inhibitor LY294002 (103±7 compared with 98±7, P=0.32). Ghrelin treatment significantly enhanced NO production in a dose‐dependent fashion compared with the untreated control group [(39.93±2.12) μmol/l compared with (30.27±2.71) μmol/l, P=0.02; (56.80±1.98) μmol/l compared with (30.27±2.71) μmol/l, P<0.01]. However, pretreatment with 20 μmol/l LY294002 inhibited the ghrelin‐stimulated increase in NO secretion [(28.97±1.64) μmol/l compared with (30.27±2.71) μmol/l, P=0.37]. In summary, we have found that ghrelin treatment promotes the proliferation, migration and NO secretion of CMECs through activation of PI3K/AKT signalling pathway.  相似文献   
976.
The receptor for advanced glycation end products (RAGE) is a 55-kDa type I membrane glycoprotein of the immunoglobulin superfamily. Ligand-induced up-regulation of RAGE is involved in various pathophysiological processes, including late diabetic complications and Alzheimer disease. Application of recombinant soluble RAGE has been shown to block RAGE-mediated pathophysiological conditions. After expression of full-length RAGE in HEK cells we identified a 48-kDa soluble RAGE form (sRAGE) in the culture medium. This variant of RAGE is smaller than a 51-kDa soluble version derived from alternative splicing. The release of sRAGE can be induced by the phorbol ester PMA and the calcium ionophore calcimycin via calcium-dependent protein kinase C subtypes. Hydroxamic acid-based metalloproteinase inhibitors block the release of sRAGE, and by RNA interference experiments we identified ADAM10 and MMP9 to be involved in RAGE shedding. In protein biotinylation experiments we show that membrane-anchored full-length RAGE is the precursor of sRAGE and that sRAGE is efficiently released from the cell surface. We identified cleavage of RAGE to occur close to the cell membrane. Ectodomain shedding of RAGE simultaneously generates sRAGE and a membrane-anchored C-terminal RAGE fragment (RAGE-CTF). The amount of RAGE-CTF increases when RAGE-expressing cells are treated with a gamma-secretase inhibitor, suggesting that RAGE-CTF is normally further processed by gamma-secretase. Identification of these novel mechanisms involved in regulating the availability of cell surface-located RAGE and its soluble ectodomain may influence further research in RAGE-mediated processes in cell biology and pathophysiology.  相似文献   
977.
陆地棉品种抗黄萎病反应规律的研究   总被引:3,自引:0,他引:3  
对我国自育的108个陆地棉品种的抗黄萎病性进行了研究。在黄萎病发病期内,对黄萎病发病情况进行连续调查,测定产量、考查产量因素并检测纤维品质。利用因子分析法对陆地棉抗黄萎病反应规律进行分析,得出不同时期的黄萎病病指主要与前后3~5个阶段抗病性有关。病情发展主要由4个主因子决定,且第1、2主因子具有较大的方差贡献率。第1主因子(F1)主要与品种7月26日至8月9日的黄萎病病指有关,第2主因子(F2)主要与品种8月20日至9月4日的黄萎病病指有关。利用因子分析结果将108个品种划分为4个类型,前期抗病性较好而后期发病较快的第Ⅰ类品种,其产量较低,单株结铃数、单铃重、衣分均低于其他3类;纤维品质均较差,纤维长度、整齐度、比强度和马克隆值均较其他3类差。前期和后期病指均较低、发病缓慢的第Ⅱ类则小区产量最高,纤维品质处于平均水平。第Ⅲ类品种前期发病较慢,中期发病较快,具有较高的小区产量,单铃重最高;纤维整齐度、比强度和伸长率好于其他3类品种;前期发病较快,中期发病平缓,后期仍具有较高病指的为第Ⅳ类品种,小区产量较低,单株产量、单株结铃数和衣分较高;其他性状处于中等水平。但研究表明,某一阶段具有的抗病性并不能完全代表品种的抗病性。  相似文献   
978.
Hepatocellular carcinoma (HCC) is considered as a disease of dysfunction of the stem cells. Studies on stem cells have demonstrated that Oct4 plays a pivotal role in embryo regulation. In order to understand the role of Oct4 in HCC and the relationship among Oct4 and wnt/β-catenin and TGF-β signal pathways, we have detected the expression of Oct4, Nanog, Sox2, STAT3 as well as the genes in wnt/β-catenin, and TGF-β families in HCC cell lines and in tumor specimens from HCC patients. The authors found that Oct4 was expressed in all of the four HCC cell lines and the tumor specimens from HCC patients. Some other genes were also expressed in them with different level including Nanog, Sox2, STAT3 and TCF3, wnt10b, β-catenin, ELF, Smad3 and Smad4. The ability of the clone formation and migration of the HepG2 decreased after Oct4 was knockdowned. Silencing of Oct4 and TCF3 in HCC cell line HepG2 revealed that there were complicated relationships among Oct4, wnt/β-catenin family and TGF-β family genes. Knockdowning Oct4 reduced the expression of TGF-β family genes ELF, Smad3, Smad4 and wnt/β-catenin family genes, wnt10b, and β-catenin but increased TCF3. In reverse, knockdowning TCF3 led to the increased expression of Oct4 and TGF-β family genes. In conclusion, the expression of Oct4 in HCC may play an important role as in stem cell. Because Oct4 improves not only the function of wnt/β-catenin, but also the TGF-β signal pathways, the significance of its expression in HCC might be more complicated than we evinced before.  相似文献   
979.
980.
Q Zhu  X Zhang  L Zhang  W Li  H Wu  X Yuan  F Mao  M Wang  W Zhu  H Qian  W Xu 《Cell death & disease》2014,5(6):e1295
Emerging evidence indicate that mesenchymal stem cells (MSCs) affect tumor progression by reshaping the tumor microenvironment. Neutrophils are essential component of the tumor microenvironment and are critically involved in cancer progression. Whether the phenotype and function of neutrophils is influenced by MSCs is not well understood. Herein, we investigated the interaction between neutrophils and gastric cancer-derived MSCs (GC-MSCs) and explored the biological role of this interaction. We found that GC-MSCs induced the chemotaxis of neutrophils and protected them from spontaneous apoptosis. Neutrophils were activated by the conditioned medium from GC-MSCs with increased expression of IL-8, TNFα, CCL2, and oncostatin M (OSM). GC-MSCs-primed neutrophils augmented the migration of gastric cancer cells in a cell contact-dependent manner but had minimal effect on gastric cancer cell proliferation. In addition, GC-MSCs-primed neutrophils prompted endothelial cells to form tube-like structure in vitro. We demonstrated that GC-MSCs stimulated the activation of STAT3 and ERK1/2 pathways in neutrophils, which was essential for the functions of activated neutrophils. We further revealed that GC-MSCs-derived IL-6 was responsible for the protection and activation of neutrophils. In turn, GC-MSCs-primed neutrophils induced the differentiation of normal MSCs into cancer-associated fibroblasts (CAFs). Collectively, our results suggest that GC-MSCs regulate the chemotaxis, survival, activation, and function of neutrophils in gastric cancer via an IL-6–STAT3–ERK1/2 signaling cascade. The reciprocal interaction between GC-MSCs and neutrophils presents a novel mechanism for the role of MSCs in remodeling cancer niche and provides a potential target for gastric cancer therapy.Accumulating evidence suggest that neutrophils are critical for cancer initiation and progression.1, 2 The increased presence of intratumoral neutrophils has been linked to a poorer prognosis for patients with renal cancer, hepatocellular carcinoma (HCC), melanoma, head and neck squamous cell carcinoma (HNSCC), pancreatic cancer, colorectal carcinoma, and gastric adenocarcinoma.3 Recent studies using murine tumor models or involving cancer patients have suggested an important functional role of neutrophils during tumor progression.4, 5, 6, 7 Neutrophils-derived factors promote genetic mutations leading to tumorigenesis or promote tumor cell proliferation,8 migration, and invasion.9, 10 Neutrophils have also been demonstrated to induce tumor vascularization by the production of pro-angiogenic factors11, 12The infiltration of neutrophils into tumors has been shown to be mediated by factors produced by both tumor and stromal cells. Recent reports suggest that tumor cells actively modulate the functions of neutrophils. Tumor-derived CXCL5 modulates the chemotaxis of neutrophils, which in turn enhances the migration and invasion of human HCC cells.13 HNSCC cells-derived MIF induces the recruitment and activation of neutrophils through a p38-dependent manner.14, 15 Neutrophils respond to hyaluronan fragments in tumor supernatants via PI3K/Akt signaling, leading to prolonged survival and stimulating effect on HCC cell motility.16 Kuang et al.17 suggest that IL-17 promotes the migration of neutrophils into HCC through epithelial cell-derived CXC chemokines, resulting in increased MMP-9 production and angiogenesis at invading tumor edge However, much less is known about the role of stromal cells in modulating the phenotype and function of neutrophils in cancer thus far.Cancer-associated fibroblasts (CAFs) have a key role in cancer mainly through secretion of soluble factors, as growth factors or inflammatory mediators, as well as production of extracellular matrix proteins and their proteases. These activated fibroblasts are involved in creating a niche for cancer cells, promoting their proliferation, motility and chemoresistance. Activated fibroblasts express several mesenchymal markers such as α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and vimentin. CAFs actively participate in reciprocal interaction with tumor cells and with other cell types in the microenvironment, contributing to a tumor-permissive niche and promoting tumor progression.Mesenchymal stem cells (MSCs) are adult stromal cells with self-renewal and pluripotent differentiation abilities. MSCs can be mobilized from bone marrow to the site of damage, respond to the local microenvironment, and exert wound repair and tissue regeneration functions upon injury and inflammation conditions.18 MSCs have been considered as one of the major components of the tumor stroma and are believed to be the precursors of CAFs.19, 20 We have previously demonstrated that human bone marrow MSCs prompt tumor growth in vivo.21 In addition, we have recently isolated MSCs-like cells from the gastric cancer tissues (GC) and the adjacent normal tissues (GCN) and shown that the gastric cancer-derived MSCs (GC-MSCs) possess the properties of CAFs.22, 23 As tumor-derived MSCs are often exposed to distinct inflammatory cells and factors in the tumor microenvironment, they may acquire novel functions that are not present in normal MSCs, and these unique functions may have a role in reshaping the tumor microenvironment and ultimately affect tumor progression. As neutrophils are key mediators of tumor progression and tumor angiogenesis, it is likely that an intense interaction may exist between the tumor-derived MSCs and tumor-infiltrating neutrophils.The emerging roles of CAFs in cancer immunoeditting led us to investigate whether GC-MSCs are able to regulate the phenotype and function of neutrophils in gastric cancer. We have shown that there is a reciprocal interaction between GC-MSCs and neutrophils. GC-MSCs enhanced the chemotaxis of peripheral blood-derived neutrophils and protected them from spontaneous apoptosis. GC-MSCs induced the activation of neutrophils to highly express IL-8, CCL2, TNFα, and oncostatin M (OSM), leading to the increase of gastric cancer cell migration and angiogenesis in vitro. GC-MSCs exerted this effect through the IL-6–STAT3–ERK1/2 signaling axis, and blockade of the IL-6–IL-6R interaction or pharmacological inhibition of STAT3 and ERK1/2 activation abrogated this role. In turn, GC-MSCs-activated neutrophils could trigger the CAF differentiation of normal MSCs. Therefore, these results establish a bi-directional interaction between GC-MSCs and neutrophils that may be critically involved in the progression of gastric cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号