首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   7篇
  2021年   1篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   5篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1981年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有79条查询结果,搜索用时 62 毫秒
71.
A reproducible system for the generation of fertile, transgenic maize plants has been developed. Cells from embryogenic maize suspension cultures were transformed with the bacterial gene bar using microprojectile bombardment. Transformed calli were selected from the suspension cultures using the herbicide bialaphos. Integration of bar and activity of the enzyme phosphinothricin acetyltransferase (PAT) encoded by bar were confirmed in all bialaphos-resistant callus lines. Fertile transformed maize plants (R0) were regenerated, and of 53 progeny (R1) tested, 29 had PAT activity. All PAT-positive progeny analyzed contained bar. Localized application of herbicide to leaves of bar-transformed R0 and R1 plants resulted in no necrosis, confirming functional activity of PAT in the transgenic plants. Cotransformation experiments were performed using a mixture of two plasmids, one encoding PAT and one containing the nonselected gene encoding [beta]-glucuronidase. R0 plants regenerated from co-transformed callus expressed both genes. These results describe and confirm the development of a system for introduction of DNA into maize.  相似文献   
72.
This article describes a simple and rapid method for efficient production of chimeric products by polymerase chain reaction (PCR). This protocol is amenable to site-directed mutagenesis strategies and can be done without the time-consuming gel purification step. The PCR products generated can also be directly used for direct gene transfer into plant cells without further subcloning to test construction strategies. An erratum to this article is available at .  相似文献   
73.
Prenatal maternal psychological distress increases risk for adverse infant outcomes. However, the biological mechanisms underlying this association remain unclear. Prenatal stress can impact fetal epigenetic regulation that could underlie changes in infant stress responses. It has been suggested that maternal glucocorticoids may mediate this epigenetic effect. We examined this hypothesis by determining the impact of maternal cortisol and depressive symptoms during pregnancy on infant NR3C1 and BDNF DNA methylation. Fifty-seven pregnant women were recruited during the second or third trimester. Participants self-reported depressive symptoms and salivary cortisol samples were collected diurnally and in response to a stressor. Buccal swabs for DNA extraction and DNA methylation analysis were collected from each infant at 2 months of age, and mothers were assessed for postnatal depressive symptoms. Prenatal depressive symptoms significantly predicted increased NR3C1 1F DNA methylation in male infants (β = 2.147, P = 0.044). Prenatal depressive symptoms also significantly predicted decreased BDNF IV DNA methylation in both male and female infants (β = −3.244, P = 0.013). No measure of maternal cortisol during pregnancy predicted infant NR3C1 1F or BDNF promoter IV DNA methylation. Our findings highlight the susceptibility of males to changes in NR3C1 DNA methylation and present novel evidence for altered BDNF IV DNA methylation in response to maternal depression during pregnancy. The lack of association between maternal cortisol and infant DNA methylation suggests that effects of maternal depression may not be mediated directly by glucocorticoids. Future studies should consider other potential mediating mechanisms in the link between maternal mood and infant outcomes.  相似文献   
74.
75.
76.
A double injection of PGF2α at two different dosage levels, 5 mg and 10 mg, eleven days apart, were compared with a combination of MAP-sponges and 5 mg or 10 mg PGF2α.The combination of MAP-sponges plus 10 mg PGF2α gave the best syn=chronization results (93,4%), as well as the best conception rate (84,9%) when ewes were inseminated on a fixed time basis 68 and 80 hours after treatment.  相似文献   
77.
78.
Shoot organogenesis is one of the in vitro plant regeneration pathways. It has been widely employed in plant biotechnology for in vitro micropropagation and genetic transformation, as well as in study of plant development. Morphological and physiological aspects of in vitro shoot organogenesis have already been extensively studied in plant tissue culture for more than 50 years. Within the last ten years, given the research progress in plant genetics and molecular biology, our understanding of in vivo plant shoot meristem development, plant cell cycle, and cytokinin signal transduction has advanced significantly. These research advances have provided useful molecular tools and resources for the recent studies on the genetic and molecular aspects of in vitro shoot organogenesis. A few key molecular markers, genes, and probable pathways have been identified from these studies that are shown to be critically involved in in vitro shoot organogenesis. Furthermore, these studies have also indicated that in vitro shoot organogenesis, just as in in vivo shoot development, is a complex, well-coordinated developmental process, and induction of a single molecular event may not be sufficient to induce the occurrence of the entire process. Further study is needed to identify the early molecular event(s) that triggers dedifferentiation of somatic cells and serves as the developmental switch for de novo shoot development.  相似文献   
79.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号