首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   7篇
  2021年   1篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   5篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1981年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
61.
To develop a less genotype-dependent maize-transformation procedure, we used 10-month-old Type I callus as target tissue for microprojectile bombardment. Twelve transgenic callus lines were obtained from two of the three anther-culture-derived callus cultures representing different gentic backgrounds. Multiple fertile transgenic plants (T0) were regenerated from each transgenic callus line. Transgenic leaves treated with the herbicide Basta showed no symptoms, indicating that one of the two introduced genes, bar, was functionally expressing. Data from DNA hybridization analysis confirmed that the introduced genes (bar and uidA) were integrated into the plant genome and that all lines derived from independent transformation events. Transmission of the introduced genes and the functional expression of bar in T1 progeny was also confirmed. Germination of T1 immature embryos in the presence of bialaphos was used as a screen for functional expression of bar; however, leaf painting of T1 plants proved a more accurate predictor of bar expression in plants. This study suggests that maize Type I callus can be transformed efficiently through microprojectile bombardment and that fertile transgenic plants can be recovered. This system should facilitate the direct introduction of agronomically important genes in to commercial genotypes.  相似文献   
62.
Activity of the enzyme choline acetyltransferase (CAT), which mediates the synthesis of the neurotransmitter, acetylcholine, was increased up to 20- fold in spinal cord (SC) cells grown in culture with muscle cells for 2 wk. This increase was directly related to the duration of co-culture as well as to the cell density of both the SC and muscle involved and was not affected by the presence of the acetylcholine receptor blocking agent, α-bungarotoxin. Glutamic acid decarboxylase (GAD) activity was often markedly decreased in SC-muscle cultures while the activities of acetylcholinesterase and several other enzymes were little changed. Increased CAT activity was also observed when SC cultures were maintained in medium which had been conditioned by muscle cells or by undifferentiated cells from embryonic muscle. Muscle-conditioned medium (CM) did not affect the activities of SC cell GAD or acetylcholinesterase. Dilution or concentration of the CM directly affected its ability to increase SC CAT activity , as did the duration and timing of exposure of the SC cells to the CM. The medium could be conditioned by muscle cells in the presence or absence of serum, and remained effective after dialysis or heating to 58 degrees C. Membrane filtration data were consistent with the conclusion that the active material(s) in CM had a molecular weight in excess of 50,000 daltons. We conclude that large molecular weight material that is released by muscle cells is capable of producing a specific increase in CAT activity of SC cells.  相似文献   
63.
Efficient negative selection systems are increasingly needed for numerous applications in plant biology. In recent years various counter-selectable genes have been tested in six dicotyledonous species, whereas there are no data available for the use of negative selection markers in monocotyledonous species. In this study, we compared the applicability and reliability of two different conditional negative selection systems in transgenic barley. The bacterial codA gene encoding cytosine deaminase, which converts the non-toxic 5-fluorocytosine (5-FC) into the toxic 5-fluorouracil (5-FU), was used for in vitro selection of germinating seedlings. Development of codA-expressing seedlings was strongly inhibited by germinating the seeds in the presence of 5-FC. For selecting plants in the greenhouse, a bacterial cytochrome P450 mono-oxygenase gene, the product of which catalyses the dealkylation of a sulfonylurea compound, R7402, into its cytotoxic metabolite, was used. T1 plants expressing the selectable marker gene showed striking morphological differences from the non-transgenic plants. In experiments with both negative selectable markers, the presence or absence of the transgene, as predicted from the physiological appearance of the plants under selection, was confirmed by PCR analysis. We demonstrate that both marker genes provide tight negative selection; however, the use of the P450 gene is more amenable to large-scale screening under greenhouse or field conditions.  相似文献   
64.
Summary Using microprojectile bombardment of maize suspension cultures and bialaphos selection, transformed embryogenic calli have been recovered in numerous independent experiments. Fertile transgenic plants have been regenerated from several transformed callus lines. Stable inheritance and expression ofbar and functional activity of the enzyme phosphinothricin acetyl transferase were observed in three subsequent generations of transformed plants. Evidence to date indicates that the transformation process and the presence of the foreign gene per se do not detrimentally influence either plant vigor or fertility. This represents a practical method for introducing foreign genes into maize, which may be applicable to other monocot species. Presented in the Session-in-Depth Genetic Transformation and Genetic Analysis Using Microprojectile Bombardment at the Annual Meeting of the Tissue Culture Association, Houston, Texas, June 10–13, 1990.  相似文献   
65.
Sugar beet (Beta vulgaris L.) is an important industrial crop, being one of only two plant sources from which sucrose (i.e., sugar) can be economically produced. Despite its relatively short period of cultivation (ca. 200 years), its yield and quality parameters have been significantly improved by conventional breeding methods. However, during the last two decades or so, advanced in vitro culture and genetic transformation technologies have been incorporated with classical breeding programs, the main aim being the production of herbicide-and salt-tolerant, disease- and pest-resistant cultivars. Among the many applications of in vitro culture techniques, sugar beet has benefited the most from haploid plant production, protoplast culture, and somaclonal variation and in vitro cell selection. Several genetic transformation technologies have been developed, such as Agrobacterium-meditated, PEG-mediated, particle bombardment, electroporation, sonication and somatic hybridization, the first two being the most successful. Development of herbicide- and salt-tolerant, virus-, pest/nematode-, fungus/Cercospora- and insect-resistant sugar beet has been demonstrated. However, only herbicide-tolerant varieties have been approved for commercialization but not yet available in the marketplace; rhizomania-resistant varieties are being evaluated in field trials. Transgenic plants that convert sucrose into fructan, a polymer of fructose, were also developed. Initial attempts to increase sucrose yields produced promising results, but it still requires additional work. Despite marked progress in improving regeneration and transformation of sugar beet, genotype dependence and low regeneration and transformation frequencies are still serious restrictions for routine application of in vitro culture and, more importantly, transformation technologies. Selected food safety and environmental impact, as well as regulatory and public acceptance issues relating to transgenic sugar beet are also discussed.  相似文献   
66.
Two new methods of transformation for recalcitrant maize elite inbreds (B73 and a Pioneer Hi-Bred inbred) were successfully developed using shoot meristematic cultures (SMCs) derived from germinated seedlings. One of the methods - the sector proliferation method - involved in vitro induction and proliferation of SMCs from transgenic sectors. These transgenic sectors derived from the bombardment of shoot apical meristems in immature embryos. Using this method, transgenic T1 and T2 progeny were obtained from the Pioneer Hi-Bred maize inbred, PHTE4. The other method - the SMC method - involved direct bombardment of SMCs. Using the second method, transgenic T1 and T2 progeny were produced from the publicly held maize inbred B73. Cellular and molecular analyses showed that SMCs were mainly induced from the nodal regions within the elongating in vitro stem tissues. The induced SMCs, characterized by large numbers of cells expressing KN1, have the potential to produce multiple adventitious shoot meristems. The use of induction and maintenance media containing higher levels of Cu2+ or Zn2+, not needed in earlier investigations on sweet corn, was found to be critical for the successful in vitro culture and transformation of some maize inbreds.  相似文献   
67.
The expression of green fluorescent protein (GFP) and its inheritance were studied in transgenic barley (Hordeum vulgare L.) plants transformed with a synthetic green fluorescent protein gene [sgfp(S65T)] driven by either a rice actin promoter or a barley endosperm-specific d-hordein promoter. The gene encoding phosphinothricin acetyltransferase (bar), driven by the maize ubiquitin promoter and intron, was used as a selectable marker to identify transgenic tissues. Strong GFP expression driven by the rice actin promoter was observed in callus cells and in a variety of tissues of T0 plants transformed with the sgfp(S65T)-containing construct. GFP expression, driven by the rice actin promoter, was observed in 14 out of 17 independent regenerable transgenic callus lines; however, expression was gradually lost in T0 and later generation progeny of diploid lines. Stable GFP expression was observed in T2 progeny from only 6 out of the 14 (43%) independent GFP-expressing callus lines. Four of the 8 lines not expressing GFP in T2 progeny, lost GFP expression during T0 plant regeneration from calli; one lost GFP expression in the transition from the T0 to T1 generations and three lines were sterile. Similarly, expression of bar driven by the maize ubiquitin promoter was lost in T1 progeny; only 21 out of 26 (81%) independent lines were Basta-resistant. In contrast to actin-driven expression, GFP expression driven by the d-hordein promoter exhibited endosperm-specificity. All seven lines transformed with d-hordein-driven GFP (100%) expressed GFP in the T1 and T2 generations, regardless of ploidy levels, and expression segregated in a Mendelian fashion. We conclude that the sgfp(S65T) gene was successfully transformed into barley and that GFP expression driven by the d-hordein promoter was more stable in its inheritance pattern in T1 and T2 progeny than that driven by the rice actin promoter or the bar gene driven by the maize ubiquitin promoter.  相似文献   
68.
69.
70.
A number of parameters related to Agrobacterium-mediated infection were tested to optimize transformation frequencies of sorghum (Sorghum bicolor L.). A plasmid with a selectable marker, phosphomannose isomerase, and an sgfp reporter gene was used. First, storing immature spikes at 4°C before use decreased frequency of GFP-expressing calli, for example, in sorghum variety P898012 from 22.5% at 0 day to 6.4% at 5 days. Next, heating immature embryos (IEs) at various temperatures for 3 min prior to Agrobacterium infection increased frequencies of GFP-expressing calli, of mannose-selected calli and of transformed calli. The optimal 43°C heat treatment increased transformation frequencies from 2.6% with no heat to 7.6%. Using different heating times at 43°C prior to infection showed 3 min was optimal. Centrifuging IEs with no heat or heating at various temperatures decreased frequencies of all tissue responses; however, both heat and centrifugation increased de-differentiation of tissue. If IEs were cooled at 25°C versus on ice after heating and prior to infection, numbers with GFP-expressing cells increased from 34.2 to 49.1%. The most optimal treatment, 43°C for 3 min, cooling at 25°C and no centrifugation, yielded 49.1% GFP-expressing calli and 8.3% stable transformation frequency. Transformation frequencies greater than 7% were routinely observed using similar treatments over 5 months of testing. This reproducible frequency, calculated as numbers of independent IEs producing regenerable transgenic tissues, confirmed by PCR, western and DNA hybridization analysis, divided by total numbers of IEs infected, is several-fold higher than published frequencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号