首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   28篇
  2021年   6篇
  2017年   4篇
  2016年   5篇
  2015年   8篇
  2014年   9篇
  2013年   14篇
  2012年   22篇
  2011年   14篇
  2010年   7篇
  2009年   21篇
  2008年   14篇
  2007年   16篇
  2006年   7篇
  2005年   19篇
  2004年   14篇
  2003年   6篇
  2002年   8篇
  2001年   10篇
  2000年   13篇
  1999年   13篇
  1998年   5篇
  1997年   8篇
  1996年   4篇
  1995年   6篇
  1994年   8篇
  1993年   7篇
  1992年   5篇
  1991年   6篇
  1990年   6篇
  1989年   8篇
  1988年   5篇
  1987年   4篇
  1986年   2篇
  1985年   7篇
  1984年   9篇
  1983年   3篇
  1981年   3篇
  1980年   3篇
  1977年   3篇
  1975年   4篇
  1974年   3篇
  1973年   2篇
  1966年   2篇
  1945年   2篇
  1927年   2篇
  1926年   3篇
  1924年   4篇
  1920年   3篇
  1916年   2篇
  1914年   3篇
排序方式: 共有382条查询结果,搜索用时 15 毫秒
41.
BACKGROUND AND AIMS: Nuclear DNA content (C-value) varies approximately 1000-fold across the angiosperms, and this variation has been reported to have an effect on the quality of AFLP fingerprints. Various methods have been proposed for circumventing the problems associated with small and large genomes. Here we investigate the range of nuclear DNA contents across which the standard AFLP protocol can be used. METHODS: AFLP fingerprinting was conducted on an automated platform using the standard protocol (with 3 + 3 selective bases) in which DNA fragments are visualized as bands. Species with nuclear DNA contents ranging from 1C = 0.2 to 32.35 pg were included, and the total number of bands and the number of polymorphic bands were counted. For the species with the smallest C-value (Bixa orellana) and for one of the species with a large C-value (Damasonium alisma), alternative protocols using 2 + 3 and 3 + 4 selective bases, respectively, were also used. KEY RESULTS: Acceptable AFLP traces were obtained using the standard protocol with 1C-values of 0.30-8.43 pg. Below this range, the quality was improved by using 2 + 3 selective bases. Above this range, the traces were generally characterized by a few strongly amplifying bands and noisy baselines. Damasonium alisma, however, gave more even traces, probably due to it being a tetraploid. CONCLUSIONS: We propose that for known polyploids, genome size is a more useful indicator than the 1C-value in deciding which AFLP protocol to use. Thus, knowledge of ploidy (allowing estimation of genome size) and C-value are both important. For small genomes, the number of interpretable bands can be increased by decreasing the number of selective bases. For larger genomes, increasing the number of bases does not necessarily decrease the number of bands as predicted. The presence of a small number of strongly amplifying bands is likely to be linked to the presence of repetitive DNA sequences in high copy number in taxa with large genomes.  相似文献   
42.
The transport of flagellar precursors and removal of turnover products from the flagellar tip is mediated by intraflagellar transport (IFT) , which is essential for both flagellar assembly and maintenance . Large groups of IFT particles are moved from the flagellar base to the tip by kinesin-2, and smaller groups are returned to the base by cytoplasmic dynein 1b. The IFT particles are composed of two protein complexes, A and B, comprising approximately 16-18 polypeptides. How cargo is unloaded from IFT particles, turnover products loaded, and active IFT motors exchanged at the tip is unknown. We previously showed that the Chlamydomonas microtubule end binding protein 1 (CrEB1) localizes to the flagellar tip and is depleted from the tips of the temperature-sensitive (ts) mutant fla11ts . We demonstrate here that FLA11 encodes IFT protein 172, a component of IFT complex B, and show that IFT172 interacts with CrEB1. Because fla11ts cells are defective in IFT particle turnaround at the tip, our results indicate that IFT172 is involved in regulating the transition between anterograde and retrograde IFT at the tip, perhaps by a mechanism involving CrEB1. Therefore, IFT172 is involved in the control of flagellar assembly/disassembly at the tip.  相似文献   
43.
44.
Tragopogon mirus and T. miscellus (both 2n = 4x = 24) are recent allotetraploids derived from T. dubius × T. porrifolius and T. dubius × T. pratensis (each 2n = 2x = 12), respectively. The genome sizes of T. mirus are additive of those of its diploid parents, but at least some populations of T. miscellus have undergone genome downsizing. To survey for genomic rearrangements in the allopolyploids, four repetitive sequences were physically mapped. TPRMBO (unit size 160 base pairs [bp]) and TGP7 (532 bp) are tandemly organized satellite sequences isolated from T. pratensis and T. porrifolius, respectively. Fluorescent in situ hybridization to the diploids showed that TPRMBO is a predominantly centromeric repeat on all 12 chromosomes, while TGP7 is a subtelomeric sequence on most chromosome arms. The distribution of tandem repetitive DNA loci (TPRMBO, TGP7, 18S-5.8S-26S rDNA, and 5S rDNA) gave unique molecular karyotypes for the three diploid species, permitting the identification of the parental chromosomes in the polyploids. The location and number of these loci were inherited without apparent changes in the allotetraploids. There was no evidence for major genomic rearrangements in Tragopogon allopolyploids that have arisen multiple times in North America within the last 80 yr.  相似文献   
45.
The order of monocotyledonous plants Asparagales is attractive for studies of telomere evolution as it includes three phylogenetically distinct groups with telomeres composed of TTTAGGG (Arabidopsis-type), TTAGGG (human-type) and unknown alternative sequences, respectively. To analyze the molecular causes of these switches in telomere sequence (synthesis), genes coding for the catalytic telomerase subunit (TERT) of representative species in the first two groups have been cloned. Multiple alignments of the sequences, together with other TERT sequences in databases, suggested candidate amino acid substitutions grouped in the Asparagales TERT synthesizing the human-type repeat that could have contributed to the changed telomere sequence. Among these, mutations in the C motif are of special interest due to its functional importance in TERT. Furthermore, two different modes of initial elongation of the substrate primer were observed in Asparagales telomerases producing human-like repeats, which could be attributed to interactions between the telomerase RNA subunit (TR) and the substrate. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
46.
Juvenile idiopathic arthritis (JIA) is the most common cause of chronic childhood disability and encompasses a number of disease subgroups. In this study we have focused on systemic JIA (sJIA), which accounts for approximately 11% of UK JIA cases. This study reports the investigation of three members of the IL10 gene family as candidate susceptibility loci in children with sJIA. DNA from 473 unaffected controls and 172 patients with sJIA was genotyped for a single nucleotide polymorphism (SNP) in IL19 and IL20 and two SNPs in IL10. We examined evidence for association of the four SNPs by single marker and haplotype analysis. Significant differences in allele frequency were observed between cases and controls, for both IL10-1082 (p = 0.031) and IL20-468 (p = 0.028). Furthermore, examination of the haplotypes of IL10-1082 and IL20-468 revealed greater evidence for association (global p = 0.0006). This study demonstrates a significant increased prevalence of the low expressing IL10-1082 genotype in patients with sJIA. In addition, we show a separate association with an IL20 polymorphism, and the IL10-1082A/IL20-468T haplotype. The two marker 'A-T' haplotype confers an odds ratio of 2.24 for sJIA. This positive association suggests an important role for these cytokines in sJIA pathogenesis.  相似文献   
47.
Enterovirus 71 (EV71) is responsible for frequent large-scale outbreaks of hand, foot, and mouth disease worldwide and represent a major etiological agent of severe, sometimes fatal neurological disease. EV71 variants have been classified into three genogroups (GgA, GgB, and GgC), and the latter two are further subdivided into subgenogroups B1 to B5 and C1 to C5. To investigate the dual roles of recombination and evolution in the epidemiology and transmission of EV71 worldwide, we performed a large-scale genetic analysis of isolates (n = 308) collected from 19 countries worldwide over a 40-year period. A series of recombination events occurred over this period, which have been identified through incongruities in sequence grouping between the VP1 and 3Dpol regions. Eleven 3Dpol clades were identified, each specific to EV71 and associated with specific subgenogroups but interspersed phylogenetically with clades of coxsackievirus A16 and other EV species A serotypes. The likelihood of recombination increased with VP1 sequence divergence; mean half-lives for EV71 recombinant forms (RFs) of 6 and 9 years for GgB and GgC overlapped with those observed for the EV-B serotypes, echovirus 9 (E9), E30, and E11, respectively (1.3 to 9.8 years). Furthermore, within genogroups, sporadic recombination events occurred, such as the linkage of two B4 variants to RF-W instead of RF-A and of two C4 variants to RF-H. Intriguingly, recombination events occurred as a founding event of most subgenogroups immediately preceding their lineage expansion and global emergence. The possibility that recombination contributed to their subsequent spread through improved fitness requires further biological and immunological characterization.  相似文献   
48.
Phylogenetic relationships in the genus Paphiopedilum were studied using nuclear ribosomal internal transcribed spacer (ITS) and plastid sequence data. The results confirm that the genus Paphiopedilum is monophyletic, and the division of the genus into three subgenera Parvisepalum, Brachypetalum and Paphiopedilum is well supported. Four sections of subgenus Paphiopedilum (Pardalopetalum, Cochlopetalum, Paphiopedilum and Barbata) are recovered as in a recent infrageneric treatment, with strong support. Section Coryopedilum is also recovered, with low bootstrap but high posterior probability values for support of monophyly. Relationships in section Barbata remain unresolved, and short branch lengths and the narrow geographical distribution of many species in the section suggest that it possibly underwent rapid radiation. Mapping chromosome and genome size data (including some new genome size measurements) onto the phylogenetic framework shows that there is no clear trend in increase in chromosome number in the genus. However, the diploid chromosome number of 2n = 26 in subgenera Parvisepalum and Brachypetalum suggests that this is the ancestral condition, and higher chromosome numbers in sections Cochlopetalum and Barbata suggest that centric fission has possibly occurred in parallel in these sections. The trend for genome size evolution is also unclear, although species in section Barbata have larger genome sizes than those in other sections. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 176–196.  相似文献   
49.
Enzymes that degrade nucleic acids are emerging as important players in the pathogenesis of inflammatory disease. This is exemplified by the recent identification of four genes that cause the childhood inflammatory disorder, Aicardi-Goutières syndrome (AGS). This is an autosomal recessive neurological condition whose clinical and immunological features parallel those of congenital viral infection. The four AGS genes encode two nucleases: TREX1 and the hetero-trimeric Ribonuclease H2 (RNase H2) complex. The biochemical activity of these enzymes was initially characterised 30 years ago but a role in neurological inflammation was entirely unanticipated until they were found to be mutated in AGS. This has led to a hypothesis that accumulation of intracellular nucleic acids occurs as a consequence of mutation in these enzymes and triggers an inflammatory response through activation of innate immune pattern recognition receptors.  相似文献   
50.
Background: The evolution and biology of rDNA have interested biologistsfor many years, in part, because of two intriguing processes:(1) nucleolar dominance and (2) sequence homogenization. Wereview patterns of evolution in rDNA in the angiosperm genusNicotiana to determine consequences of allopolyploidy on theseprocesses. Scope: Allopolyploid species of Nicotiana are ideal for studying rDNAevolution because phylogenetic reconstruction of DNA sequenceshas revealed patterns of species divergence and their parents.From these studies we also know that polyploids formed overwidely different timeframes (thousands to millions of years),enabling comparative and temporal studies of rDNA structure,activity and chromosomal distribution. In addition studies onsynthetic polyploids enable the consequences of de novo polyploidyon rDNA activity to be determined. Conclusions: We propose that rDNA epigenetic expression patterns establishedeven in F1 hybrids have a material influence on the likely patternsof divergence of rDNA. It is the active rDNA units that arevulnerable to homogenization, which probably acts to reducemutational load across the active array. Those rDNA units thatare epigenetically silenced may be less vulnerable to sequencehomogenization. Selection cannot act on these silenced genes,and they are likely to accumulate mutations and eventually beeliminated from the genome. It is likely that whole silencedarrays will be deleted in polyploids of 1 million years of ageand older.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号