首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   19篇
  2021年   7篇
  2020年   4篇
  2017年   4篇
  2016年   5篇
  2015年   9篇
  2014年   9篇
  2013年   15篇
  2012年   22篇
  2011年   13篇
  2010年   8篇
  2009年   17篇
  2008年   12篇
  2007年   15篇
  2006年   8篇
  2005年   19篇
  2004年   14篇
  2003年   8篇
  2002年   8篇
  2001年   10篇
  2000年   13篇
  1999年   11篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   6篇
  1989年   6篇
  1988年   5篇
  1987年   4篇
  1985年   7篇
  1984年   9篇
  1983年   4篇
  1980年   3篇
  1977年   3篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
  1966年   2篇
  1945年   2篇
  1927年   2篇
  1926年   3篇
  1924年   4篇
  1920年   3篇
  1916年   2篇
  1914年   3篇
排序方式: 共有374条查询结果,搜索用时 18 毫秒
111.
We investigated concerted evolution of rRNA genes in multiple populations of Tragopogon mirus and T. miscellus, two allotetraploids that formed recurrently within the last 80 years following the introduction of three diploids (T. dubius, T. pratensis, and T. porrifolius) from Europe to North America. Using the earliest herbarium specimens of the allotetraploids (1949 and 1953) to represent the genomic condition near the time of polyploidization, we found that the parental rDNA repeats were inherited in roughly equal numbers. In contrast, in most present-day populations of both tetraploids, the rDNA of T. dubius origin is reduced and may occupy as little as 5% of total rDNA in some individuals. However, in two populations of T. mirus the repeats of T. dubius origin outnumber the repeats of the second diploid parent (T. porrifolius), indicating bidirectional concerted evolution within a single species. In plants of T. miscellus having a low rDNA contribution from T. dubius, the rDNA of T. dubius was nonetheless expressed. We have apparently caught homogenization of rDNA repeats (concerted evolution) in the act, although it has not proceeded to completion in any allopolyploid population yet examined.  相似文献   
112.
We examined the structure, intranuclear distribution and activity of ribosomal DNA (rDNA) in Nico-tiana sylvestris (2n=2x=24) and N. tomentosiformis (2n=2x=24) and compared these with patterns in N. tabacum (tobacco, 2n=4x=48). We also examined a long-established N. tabacum culture, TBY-2. Nicotiana tabacum is an allotetraploid thought to be derived from ancestors of N. sylvestris (S-genome donor) and N. tomentosiformis (T-genome donor). Nicotiana sylvestris has three rDNA loci, one locus each on chromosomes 10, 11, and 12. In root-tip meristematic interphase cells, the site on chromosome 12 remains condensed and inactive, while the sites on chromosomes 10 and 11 show activity at the proximal end of the locus only. Nicotiana tomentosiformis has one major locus on chromosome 3 showing activity and a minor, inactive locus on chromosome 11. In N. tabacum cv. 095-55, there are four rDNA loci on T3, S10, S11/t and S12 (S11/t carries a small T-genome translocation). The locus on S12 remains condensed and inactive in root-tip meristematic cells while the others show activity, including decondensation at interphase and secondary constrictions at metaphase. Nicotiana tabacum DNA digested with methylcytosine-sensitive enzymes revealed a hybridisation pattern for rDNA that resembled that of N. tomentosiformis and not N. sylvestris. The data indicate that active, undermethylated genes are of the N. tomentosiformis type. Since S-genome chromosomes of N. tabacum show rDNA expression, the result indicates rDNA gene conversion of the active rDNA units on these chromosomes. Gene conversion in N. tabacum is consistent with the results of previous work. However, using primers specific for the S-genome rDNA intergenic sequences (IGS) in the polymerase chain reaction (PCR) show that rDNA gene conversion has not gone to completion in N. tabacum. Furthermore, using methylation-insensitive restriction enzymes we demonstrate that about 8% of the rDNA units remain of the N. sylvestris type (from ca. 75% based on the sum of the rDNA copy numbers in the parents). Since the active genes are likely to be of an N. tomentosiformis type, the N. sylvestris type units are presumably contained within inactive loci (i.e. on chromosome S12). Nicotiana sylvestris has approximately three times as much rDNA as the other two species, resulting in much condensed rDNA at interphase. This species also has three classes of IGS, indicating gene conversion has not homogenised repeat length in this species. The results suggest that methylation and/or DNA condensation has reduced or prevented gene conversion from occurring at inactive genes at rDNA loci. Alternatively, active undermethylated units may be vulnerable to gene conversion, perhaps because they are decondensed and located in close proximity within the nucleolus at interphase. In TBY-2, restriction enzymes showed hybridisation patterns that were similar to, but different from, those of N. tabacum. In addition, TBY-2 has elevated rDNA copy number and variable numbers of rDNA loci, all indicating rDNA evolution in culture. Received: 17 November 1999; in revised form: 3 February 2000 / Accepted: 3 February 2000  相似文献   
113.
Phylogenetic schemes based on changing DNA sequence have made a major impact on our understanding of evolutionary relationships and significantly built on knowledge gained by morphological and anatomical studies. Here we present another approach to phylogeny, using fluorescent in situ hybridisation. The phylogenetic scheme presented is likely to be robust since it is derived from the chromosomal distribution of ten repetitive sequences with different functions and evolutionary constraints [GRS, HRS60, NTRS, the Arabidopsis-type telomere repeat (TTTAGGG)n, 18S-5.8S-26S ribosomal DNA (rDNA), 5S rDNA, and four classes of geminiviral-related DNA (GRD)]. The basic karyotypes of all the plant species investigated Nicotiana tomentosiformis, N. kawakamii, N. tomentosa, N. otophora, N. setchellii, N. glutinosa (all section Tomentosae), and N. tabacum (tobacco, section Genuinae) are similar (x=12) but the distribution of genic and non-genic repeats is quite variable, making the karyotypes distinct. We found sequence dispersal, and locus gain, amplification and loss, all within the regular framework of the basic genomic structure. We predict that the GRD classes of sequence integrated into an ancestral genome only once in the evolution of section Tomentosae and thereafter spread by vertical transmission and speciation into four species. Since GRD is similar to a transgenic construct that was inserted into the N. tabacum genome, its fate over evolutionary time is interesting in the context of the debate on genetically modified organisms and the escape of genes into the wild. Nicotiana tabacum is thought to be an allotetraploid between presumed progenitors of N. sylvestris (maternal, S-genome donor) and a member of section Tomentosae (T-genome donor). Of section Tomentosae, N. tomentosiformis has the most similar genome to the T genome of tobacco and is therefore the most likely paternal genome donor. It is known for N. tabacum that gene conversion has converted most 18S-5.8S-26S rDNA units of N. sylvestris origin into units of an N. tomentosiformis type. Clearly if such a phenomenon were widespread across the genome, genomic in situ hybridisation (GISH) to distinguish the S and T genomes would probably not work since conversion would tend to homogenise the genomes. The fact that GISH does work suggests a limited role for gene conversion in the evolution of N. tabacum. Received: 8 November 1999; in revised form: 23 February 2000 / Accepted: 1 March 2000  相似文献   
114.
Plant genome size research: a field in focus   总被引:6,自引:0,他引:6  
This Special Issue contains 18 papers arising from presentations at the Second Plant Genome Size Workshop and Discussion Meeting (hosted by the Royal Botanic Gardens, Kew, 8-12 September, 2003). This preface provides an overview of these papers, setting their key contents in the broad framework of this highly active field. It also highlights a few overarching issues with wide biological impact or interest, including (1) the need to unify terminology relating to C-value and genome size, (2) the ongoing quest for accurate gold standards for accurate plant genome size estimation, (3) how knowledge of species' DNA amounts has increased in recent years, (4) the existence, causes and significance of intraspecific variation, (5) recent progress in understanding the mechanisms and evolutionary patterns of genome size change, and (6) the impact of genome size knowledge on related biological activities such as genetic fingerprinting and quantitative genetics. The paper offers a vision of how increased knowledge and understanding of genome size will contribute to holisitic genomic studies in both plants and animals in the next decade.  相似文献   
115.
Two clones of Miscanthus, grown under the names M. ×giganteus and M. sacchariflorus, have been used in biomass trials in Europe, but neither the identity of these clones nor their origin has been established. DNA sequencing, amplified fragment length polymorphism (AFLP), and chromosome studies confirm that M. ×giganteus is an allotriploid (2n = 3x = 57) combining genomes from M. sinensis (2n = 2x = 38) and M. sacchariflorus (2n = 38 or 76). Two alleles of the internal transcribed spacer of 18S-25S nuclear ribosomal DNA (ITS) were discovered in polymerase chain reaction products of M. ×giganteus. Cloning of these revealed that one matched M. sinensis and the other M. sacchariflorus. Plastid trnL intron and trnL-F spacer sequences showed that the maternal lineage of M. ×giganteus was M. sacchariflorus. Fluorescent in situ hybridization, FISH, was used to investigate genome organization in Miscanthus but was unable to differentiate between the different parental genomes present in M. ×giganteus, indicating that two parental genomes are still extremely similar at the repetitive DNA level. This study is an example in which rDNA sequences and AFLP fingerprints permit identification of the parental genomes in a hybrid, but FISH methods, at the repetitive DNA level (including genomic in situ hybridization, GISH), were unable to do so because their sequences remain too similar.  相似文献   
116.
Checkpoints maintain order and fidelity in the cell cycle by blocking late-occurring events when earlier events are improperly executed. Here we describe evidence for the participation of Chk1 in an intra-S phase checkpoint in mammalian cells. We show that both Chk1 and Chk2 are phosphorylated and activated in a caffeine-sensitive signaling pathway during S phase, but only in response to replication blocks, not during normal S phase progression. Replication block-induced activation of Chk1 and Chk2 occurs normally in ataxia telangiectasia (AT) cells, which are deficient in the S phase response to ionizing radiation (IR). Resumption of synthesis after removal of replication blocks correlates with the inactivation of Chk1 but not Chk2. Using a selective small molecule inhibitor, cells lacking Chk1 function show a progressive change in the global pattern of replication origin firing in the absence of any DNA replication. Thus, Chk1 is apparently necessary for an intra-S phase checkpoint, ensuring that activation of late replication origins is blocked and arrested replication fork integrity is maintained when DNA synthesis is inhibited.  相似文献   
117.
All Aloe taxa (~400 species) share a conserved bimodal karyotype with a basic genome of four large and three small submetacentric/acrocentric chromosomes. We investigated the physical organization of 18S-5.8S-26S and 5S ribosomal DNA (rDNA) using fluorescent in situ hybridization (FISH) to 13 Aloe species. The organization was compared with a phylogenetic tree of 28 species (including the 13 used for FISH) constructed by sequence analysis of the internal transcribed spacer (ITS) of 18S-5.8S-26S rDNA. The phylogeny showed little divergence within Aloe, although distinct, well-supported clades were found. FISH analysis of 5S rDNA distribution showed a similar interstitial location on a large chromosome in all species examined. In contrast, the distribution of 18S-5.8S-26S rDNA was variable, with differences in number, location, and size of loci found between species. Nevertheless, within well-supported clades, all species had the same organizational patterns. Thus, despite the striking stability of karyotype structure and location of 5S rDNA, the distribution of 18S-5.8S-26S rDNA is not so constrained and has clearly changed during Aloe speciation.  相似文献   
118.
Abstract— Myelin fragments were isolated from bovine optic nerves and then exposed to solutions of NaCl, CaCl2, LaCl3 or to water. Measurements of the water content of myelin pellets and the hydrophobicity of myelin fragments indicated an apparent isoelectric point at about pH 4.0 which increased with increasing membrane counterion valence. The exposure of myelin to CaCl2 and LaCl3 solutions for 1 hr removed relatively more cholesterol and galactolipid than protein or phospholipid. The same changes were observed after 12 days of storage in all four solutions. Myelin ultrastructure was evaluated by electron microscopy after positive and negative staining. No pronounced changes in myelin ultra-structure were seen after exposure to any of these solutions although extensive beading of the lamellae was observed and the magnitude of the major period was greater than that reported for native myelin. While differences in the physical properties of myelin after exposure to Na+, Ca++, or La+++ ions could be explained by considering the fixed charge shielding capabilities of these cations, changes of state of the membrane infrastructure could not be ruled out. At pH values above 4.0 myelin fragments behaved like a cation exchange system.  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号