首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1490篇
  免费   92篇
  国内免费   4篇
  2024年   4篇
  2023年   19篇
  2022年   37篇
  2021年   69篇
  2020年   55篇
  2019年   55篇
  2018年   59篇
  2017年   53篇
  2016年   52篇
  2015年   83篇
  2014年   97篇
  2013年   139篇
  2012年   131篇
  2011年   114篇
  2010年   76篇
  2009年   56篇
  2008年   79篇
  2007年   79篇
  2006年   54篇
  2005年   42篇
  2004年   50篇
  2003年   58篇
  2002年   39篇
  2001年   7篇
  2000年   6篇
  1999年   3篇
  1998年   7篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1989年   3篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   6篇
  1978年   1篇
  1976年   3篇
  1973年   2篇
  1971年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有1586条查询结果,搜索用时 15 毫秒
101.
The activation of the phenylpropanoid pathway in plants by environmental stimuli is one of the most universal biochemical stress responses known. In tomato plant, rubbing applied to a young internode inhibit elongation of the rubbed internode and his neighboring one. These morphological changes were correlated with an increase in lignification enzyme activities, phenylalanine ammonia-lyase (PAL), cinnamyl alcohol dehydrogenase (CAD) and peroxidases (POD), 24 hours after rubbing of the forth internode. Furthermore, a decrease in indole-3-acetic acid (IAA) content was detected in the rubbed internode and the upper one. Taken together, our results suggest that decrease in rubbed internode length is a consequence of IAA oxidation, increases in enzyme activities (PAL, CAD and POD), and cell wall rigidification associated with induction of lignification process.Key words: Mechanical stimulation, PAL, CAD, POD, IAAIn their environment, plants are constantly submitted to several stimuli such as wind, rain and wounding. The growth response of plants to such stimuli was termed thigmomorphogenesis and was observed in a wide range of plants.13 The most common thigmomorphogenetic response is a retardation of tissue elongation accompanied by an increase in thickness.4 The plant response to mechanical perturbation is mainly restricted to the young developing internode, since no influence can be detected when the internode has reached its final length.5,6 These plant growth modifications, which characterize thigmomorphogenesis, are related to biochemical events associated with lignification process7 and ethylene production.8,9In tomato plant the length of internodes 4 (N4) and 5 (N5) was measured 14 days after rubbing of the fourth internode. Results reported in Figure 1 show that rubbing led to a significant reduction of elongation of the stressed internode (N4) (decrease of N4 length from 4.3 cm in the control plant to 2.9 in the rubbed one). This effect was not limited to the rubbed area but affected also the elongation of the neighboring internodes (N5) that were shorter in rubbed plants than in control ones.Open in a separate windowFigure 1Internode lengths of control and rubbed plants measured 14 day after mechanical stress applied to the fourth internode. Standard errors are indicated by vertical bars.Results reported in Figure 2 show an increase in PAL activity in both internodes N4 and N5, 24 hours after mechanical stress application as compared with corresponding controls. CAD activity was also investigated in N4 and N5, 24 h after rubbing of the fourth internode. Results presented in Figure 3 show that mechanical stress application induces a strong increase of CAD activity in the rubbed internode N4 (5.3 nkatal μg-1 protein) with an approximately two-fold increase when compared to control tomato internodes (2.3 nkatal μg-1 protein). Further, CAD activity in N5 was also increased in the rubbed internode (5.538 nkatal μg-1 protein) as compared with the control one (3.256 nkatal μg-1 protein).Open in a separate windowFigure 2PAL activity of internode 4, and 5 in control and rubbed plants 24 h after rubbing of the fourth internode. Standard errors are indicated by vertical bars.Open in a separate windowFigure 3CAD activity of internode 4, and 5 in control and rubbed plants 24 h after rubbing of the fourth internode. Standard errors are indicated by vertical bars.Syringaldazine (S-POD) and gaïacol (G-POD) peroxidase activities were measured in tomato N4 and N5. Results reported in Figure 4 show an increase in soluble peroxidase activity with both substrates in the rubbed internode N4 as compared with control plant. Enhancement in peroxidase activities in N4 was more pronounced with gaïacol (80.7 U) as an electron donor than syringaldazine (33.8 U). Similar results were observed in internode 5 as compared with control one (Fig. 4).Open in a separate windowFigure 4(A) Syringaldazine-POD (Syr-POD) activity of internode 4 and 5 in control and rubbed plants 24 h after rubbing of the fourth internode. Standard errors are indicated by vertical bars. (B) Gaiacol-POD (G-POD) activity of internode 4 and 5 in control and rubbed plants 24 h after rubbing of the fourth internode. Standard errors are indicated by vertical bars.IAA was quantified in control and rubbed plant internodes 24 h after rubbing of the fourth internode. Results reported in figure 5 show that in control sample and as expected, the content of IAA was found to be higher in the younger internode (N5) as compared to the older one (N4). Rubbing led to a significant decrease in IAA levels in N4 (5.06 nmol g−1 MF−1) as compared with corresponding controls (7.27 nmol g−1 MF−1). Similar results were observed in internode 5, where IAA content was reduced from 16.52 nmol g−1 MF−1 in control internode to 12.35 nmol g−1 MF−1 in the rubbed internode (Fig. 5).Open in a separate windowFigure 5IAA Level of internode 4 and 5 in control and rubbed plants 24 h after rubbing of the fourth internode. Standard errors are indicated by vertical bars.The results reported here establish an evident correlation between growth limitation of the rubbed internode and their degree of lignification, the increase in lignification enzymes activities and auxin degradation after mechanical stress application.Auxin seems to be involved in thigmomorphogenesis.10 It was proposed that MIS (Mechanically-induced stress) has opposite effects on auxin levels in the two species studied to date, Phaseolus vulgaris10 and Bryonia dioica.11,12 Auxin level as measured by bioassay, increased in Phaseolus vulgaris following rubbing of the stem.10 It was proposed that a build up of auxin may result from the reduced polar transport of IAA at the rubbed internode, causing a build up of IAA in the stem tissue. Exogenous IAA did not reverse the MIS inhibition of growth in Phaseolus vulgaris and high levels of IAA retarded growth in non-stressed plants.10 Thus, retardation of extension growth in Phaseolus vulgaris may have been caused by high levels of endogenous auxin and the increase in stem diameter by increased ethylene production.4 However, ethylene increases radial growth only if auxin is present.13Boyer11 reported a decrease in auxinlike activity in Bryonia dioica following MIS and this was confirmed in the same species by Hofinger et al.12 who reported a decrease in IAA using gas chromatography-mass spectrometry. Auxin catabolism was accompanied with changes in both soluble and ionically bound cell wall basic peroxidases14 and the appearance of an additional peroxidase. This can suggest that in Bryonia, auxin catabolism is hastened by mechanical stimulated peroxidase. In addition, Boyer et al.15 reported that lithium pre-treatment prevents both thigmomorphogenesis and appearance of specific cathodic isoperoxidase in Bryonia plants subjected to MIS. This is give further credence to the possibility that the peroxidase-auxin system is involved in Bryonia thigmomorphogenesis. In addition, ethylene increases peroxidase activity which reduces the auxin content in the tissue to a level low enough not to support normal growth. We have evidence that decrease of auxin level contribute to mechanism leading to tomato internode inhibition subjected to mechanical stress.Growth inhibition has been suggested to be the result of tissues lignification.6 As the initial enzyme in the monolignol biosynthesis pathway, PAL has a direct influence on lignin accumulation.16 The characteristics of lignin differ among cell wall tissues and plant organs.17 It comprises polyphenolic polymers derived from the oxidative polymerization of different monolignols, including p-coumaryl, coniferyl and sinapyl alcohols via a side pathway of phenylalanine metabolism leading to lignin synthesis.18 The increase in lignin content in the rubbed tomato internode could be a response mechanism to mechanical damage caused by rubbing.3 It is known that plants create a natural barrier that includes lignin and suberin synthesis, components directly linked to support systems.19,20The increase in lignin content of rubbed tomato internode3 is paralleled by a rise in CAD activity and whilst such direct proportionality between CAD activity and lignin accumulation does not always agree with the results in the literature, it clearly is responding in ways similar to those of the other enzymes in the pathway.21Mechanical stress-induced membrane depolarization would generate different species of free radicals and peroxides, which in turn initiate lipid peroxidation.22 The degradation of cell membranes is suggested to bring about rapid changes in ionic flux, especially release of K+ which would result in an enhanced endogenous Ca/K ratio and in leakage of solutes, among them electron donors such as ascorbic acid and phenolic substances. The increased intracellular relative calcium level activated secretion of basic peroxidases23 into the free space where, in association with the electron donors and may be with the circulating IAA, they eliminate the peroxides, and facilitated binding of basic peroxidases to membrane structures allowing a role as 1-aminocyclopropane-1-carboxylic acid (ACC)-oxidases. The resulting IAA and ACC oxidase-mediated changes in ethylene production24 would further induce (this time through the protein synthesis machinery) an increase in activity of phenylalanine ammonia-lyase and peroxidases. The resulting lignification and cell wall rigidification determines the growth response of tomato internode to the mechanical stress.  相似文献   
102.
The mutagenic and antimutagenic effects of the essential oil extracted from the aerial parts of Teucrium ramosissimum were evaluated by the bacterial reverse mutation assay in Salmonella typhimurium TA98, TA100, and TA1535, with and without exogenous metabolic activation (S9 fraction). The T. ramosissimum essential oil showed no mutagenic effect. In contrast, our results established that it possessed antimutagenic effects against sodium azide (SA), aflatoxin B1 (AFB1), benzo[a]pyrene (B[a]P), and 4‐nitro‐o‐phenylenediamine (NOPD). The antioxidant capacity of the tested essential oil was evaluated using enzymatic, i.e., the xanthine/xanthine oxidase (X/XOD) assay, and nonenzymatic systems, i.e., the nitro‐blue tetrazolium (NBT)/riboflavin and the DPPH assays. A moderate free radical‐scavenging activity was observed towards DPPH. and O$\rm{{_{2}^{{^\cdot} -}}}$ . In contrast, T. ramosissimum essential oil showed no effect for all the tested concentrations in the X/XOD assay.  相似文献   
103.
Febrile convulsion is the most common disorder in childhood with good prognosis. There are different hypotheses about neurotransmitters and trace element changes in biological fluids which can have a role in pathogenesis of febrile convulsion. In this study, serum selenium, zinc, and copper were measured by atomic absorption spectrometry in the children with febrile convulsion (n?=?30) and in the control group (n?=?30). The age and sex of the subjects were registered. Selenium and zinc were found to be significantly lower in febrile convulsion cases than in the control group (p?<?0.0001 and p?<?0.0001, respectively). There was no significant difference in the value of copper between the two groups (p?=?0.16). While selenium and zinc levels were 44.92?±?10.93 μg/l and 66.13?±?18.97 μg/dl in febrile convulsion, they were found to be 62.98?±?9.80 μg/l and 107.87?±?28.79 μg/dl in healthy children. Meanwhile, copper levels were 146.40?±?23.51 μg/dl in the patients and 137.63?±?24.19 μg/dl in the control group, respectively. This study shows that selenium and zinc play an important role in the pathogenesis of febrile convulsion.  相似文献   
104.
The extent to which proteins aggregate into distinct structures ranging from prefibrillar oligomers to amyloid fibrils is key to the pathogenesis of many age-related degenerative diseases. We describe here for the Alzheimer's disease-related amyloid β peptide (Aβ) an investigation of the sequence-based determinants of the balance between the formation of prefibrillar aggregates and amyloid fibrils. We show that by introducing single-point mutations, it is possible to convert the normally harmless Aβ40 peptide into a pathogenic species by increasing its relative propensity to form prefibrillar but not fibrillar aggregates, and, conversely, to abolish the pathogenicity of the highly neurotoxic E22G Aβ42 peptide by reducing its relative propensity to form prefibrillar species rather than mature fibrillar ones. This observation can be rationalized by the demonstration that whereas regions of the sequence of high aggregation propensity dominate the overall tendency to aggregate, regions with low intrinsic aggregation propensities exert significant control over the balance of the prefibrillar and fibrillar species formed, and therefore play a major role in determining the neurotoxicity of the Aβ peptide.  相似文献   
105.

Background  

Leptin, a 167 amino acid peptide hormone, profoundly effects reproduction exerting its biological effects via interaction with the leptin receptor (ObR) which is widely expressed on peripheral tissues. In this study, we have attempted to assess leptin receptor expression in the spermatozoa of fertile males and those diagnosed with male factor infertility; both at the mRNA or protein levels.  相似文献   
106.
Protein aggregation, arising from the failure of the cell to regulate the synthesis or degradation of aggregation-prone proteins, underlies many neurodegenerative disorders. However, the balance between the synthesis, clearance, and assembly of misfolded proteins into neurotoxic aggregates remains poorly understood. Here we study the effects of modulating this balance for the amyloid-beta (Aβ) peptide by using a small engineered binding protein (ZAβ3) that binds with nanomolar affinity to Aβ, completely sequestering the aggregation-prone regions of the peptide and preventing its aggregation. Co-expression of ZAβ3 in the brains of Drosophila melanogaster expressing either Aβ42 or the aggressive familial associated E22G variant of Aβ42 abolishes their neurotoxic effects. Biochemical analysis indicates that monomer Aβ binding results in degradation of the peptide in vivo. Complementary biophysical studies emphasize the dynamic nature of Aβ aggregation and reveal that ZAβ3 not only inhibits the initial association of Aβ monomers into oligomers or fibrils, but also dissociates pre-formed oligomeric aggregates and, although very slowly, amyloid fibrils. Toxic effects of peptide aggregation in vivo can therefore be eliminated by sequestration of hydrophobic regions in monomeric peptides, even when these are extremely aggregation prone. Our studies also underline how a combination of in vivo and in vitro experiments provide mechanistic insight with regard to the relationship between protein aggregation and clearance and show that engineered binding proteins may provide powerful tools with which to address the physiological and pathological consequences of protein aggregation.  相似文献   
107.
108.
We studied the diet, habitat use, and ranging behavior of 1 group of Callimico goeldii (callimicos) over 12 mo in northwestern Bolivia. The group’s diet was comprised of fungi (39%), fruits (31%), arthropods (14%), exudates (14%), and other matter (2%). Callimicos concentrated their ranging activities in secondary forest (50%), primary forest with dense understory (30%), and bamboo (17%) habitats. The group’s total home range was 114 ha; on average they used 38.4 ha/ mo and had a day range of 925 m. Monthly average day ranges—but not monthly home ranges—increased as frugivory declined, suggesting that subjects foraged on fungi and exudates by rechecking resources within a core area, making their day ranges longer than during months when they concentrated on fruit resources. The callimicos formed polyspecific associations with tamarins (Saguinus labiatus and S. fuscicollis) during 81% of observations. Day ranges increased in months with higher association rates which appears to result from the callimicos using a broader set of habitats when with tamarins than when alone. The ranging pattern of callimicos appears to be influenced primarily by 3 factors: their seasonal shift in diet requires that they forage in a variety of habitats across the year; their depletion of resources causes them to shift their core area over time; and their lack of territorial behavior eliminates the need to patrol boundaries as part of their daily movement. As a result, callimicos differ from many other callitrichids in their low ratio of day range length to home range size.  相似文献   
109.
Epidemiological studies of mobile phone use and risk of brain cancer have relied on self-reported use, years as a subscriber, and billing records as exposure surrogates without addressing the level of radiofrequency (RF) power output. The objective of this study was to measure environmental, behavioral and engineering factors affecting the RF power output of GSM mobile phones during operation. We estimated the RF-field exposure of volunteer subjects who made mobile phone calls using software-modified phones (SMPs) that recorded output power settings. Subjects recruited from three geographic areas in the U.S. were instructed to log information (place, time, etc.) for each call made and received during a 5-day period. The largest factor affecting energy output was study area, followed by user movement and location (inside or outside), use of a hands-free device, and urbanicity, although the two latter factors accounted for trivial parts of overall variance. Although some highly statistically significant differences were identified, the effects on average energy output rate were usually less than 50% and were generally comparable to the standard deviation. These results provide information applicable to improving the precision of exposure metrics for epidemiological studies of GSM mobile phones and may have broader application for other mobile phone systems and geographic locations.  相似文献   
110.
Protein kinase D (PKD), also called protein kinase C (PKC)mu, is a serine-threonine kinase that is involved in diverse areas of cellular function such as lymphocyte signaling, oxidative stress, and protein secretion. After identifying a putative PKD phosphorylation site in the Toll/IL-1R domain of TLR5, we explored the role of this kinase in the interaction between human TLR5 and enteroaggregative Escherichia coli flagellin in human epithelial cell lines. We report several lines of evidence that implicate PKD in TLR5 signaling. First, PKD phosphorylated the TLR5-derived target peptide in vitro, and phosphorylation of the putative target serine 805 in HEK 293T cell-derived TLR5 was identified by mass spectrometry. Furthermore, mutation of serine 805 to alanine abrogated responses of transfected HEK 293T cells to flagellin. Second, TLR5 interacted with PKD in coimmunoprecipitation experiments, and this association was rapidly enhanced by flagellin treatment. Third, pharmacologic inhibition of PKC or PKD with G?6976 resulted in reduced expression and secretion of IL-8 and prevented the flagellin-induced activation of p38 MAPK, but treatment with the PKC inhibitor G?6983 had no significant effects on these phenotypes. Finally, involvement of PKD in the p38-mediated IL-8 response to flagellin was confirmed by small hairpin RNA-mediated gene silencing. Together, these results suggest that phosphorylation of TLR5 by PKD may be one of the proximal elements in the cellular response to flagellin, and that this event contributes to p38 MAPK activation and production of inflammatory cytokines in epithelial cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号