首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1556篇
  免费   107篇
  2021年   15篇
  2020年   8篇
  2019年   22篇
  2018年   6篇
  2017年   24篇
  2016年   29篇
  2015年   59篇
  2014年   74篇
  2013年   84篇
  2012年   103篇
  2011年   157篇
  2010年   103篇
  2009年   88篇
  2008年   87篇
  2007年   89篇
  2006年   75篇
  2005年   80篇
  2004年   74篇
  2003年   62篇
  2002年   61篇
  2001年   25篇
  2000年   13篇
  1999年   12篇
  1998年   10篇
  1997年   14篇
  1996年   17篇
  1995年   16篇
  1994年   15篇
  1993年   20篇
  1992年   11篇
  1991年   12篇
  1990年   11篇
  1989年   6篇
  1988年   12篇
  1987年   13篇
  1985年   11篇
  1984年   11篇
  1983年   8篇
  1982年   7篇
  1981年   9篇
  1980年   14篇
  1979年   18篇
  1978年   19篇
  1977年   7篇
  1976年   4篇
  1975年   6篇
  1974年   9篇
  1973年   4篇
  1971年   5篇
  1968年   4篇
排序方式: 共有1663条查询结果,搜索用时 687 毫秒
991.
The Grey horse phenotype, caused by a 4.6 kb duplication in Syntaxin 17, is strongly associated with high incidence of melanoma. In contrast to most human melanomas with an early onset of metastasis, the Grey horse melanomas have an extended period of benign growth, after which 50% or more eventually undergo progression and may metastasize. In efforts to define changes occurring during Grey horse melanoma progression, we established an in vitro model comprised of two cell lines, HoMel-L1 and HoMel-A1, representing a primary and a metastatic stage of the melanoma, respectively. The cell lines were examined for their growth and morphological characteristics, in vitro and in vivo oncogenic potential, chromosome numbers, and expression of melanocytic antigens and tumor suppressors. Both cell lines exhibited malignant characteristics; however, the metastatic HoMel-A1 showed a more aggressive phenotype characterized by higher proliferation rates, invasiveness, and a stronger tumorigenic potential both in vitro and in vivo. HoMel-A1 displayed a near-haploid karyotype, whereas HoMel-L1 was near-diploid. The cell lines expressed melanocytic lineage markers such as TYR, TRP1, MITF, PMEL, ASIP, MC1R, POMC, and KIT. The tumor suppressor p53 was strongly expressed in both cell lines, while the tumor suppressors p16 and PTEN were absent in HoMel-A1, potentially implicating significance of these pathways in the melanoma progression. This in vitro model system will not only aid in understanding of the Grey horse melanoma pathogenesis, but also in unraveling the steps during melanoma progression in general as well as being an invaluable tool for development of new therapeutic strategies.  相似文献   
992.

Background

Lignin derivatives are phenylpropanoid biopolymers derived from pulping and biorefinery processes. The possibility to utilize lignin derivatives from different types of processes in advanced enzyme-catalyzed oxygen-scavenging systems intended for active packaging was explored. Laccase-catalyzed oxidation of alkali lignin (LA), hydrolytic lignin (LH), organosolv lignin (LO), and lignosulfonates (LS) was compared using oxygen-scavenging coatings and films in liquid and gas phase systems.

Results

When coatings containing lignin derivatives and laccase were immersed in a buffered aqueous solution, the oxygen-scavenging capability increased in the order LO?<?LH?<?LA?<?LS. Experiments with coatings containing laccase and LO, LH or LA incubated in oxygen-containing gas in air-tight chambers and at a relative humidity (RH) of 100% showed that paperboard coated with LO and laccase reduced the oxygen content from 1.0% to 0.4% during a four-day period, which was far better than the results obtained with LA or LH. LO-containing coatings incubated at 92% RH also displayed activity, with a decrease in oxygen from 1.0% to 0.7% during a four-day period. The oxygen scavenging was not related to the content of free phenolic hydroxyl groups, which increased in the order LO?<?LS?<?LH?<?LA. LO and LS were selected for further studies and films containing starch, clay, glycerol, laccase and LO or LS were characterized using gel permeation chromatograpy, dynamic mechanical analysis, and wet stability.

Conclusions

The investigation shows that different lignin derivatives exhibit widely different properties as a part of active coatings and films. Results indicate that LS and LO were most suitable for the application studied and differences between them were attributed to a higher degree of laccase-catalyzed cross-linking of LS than of LO. Inclusion in active-packaging systems offers a new way to utilize some types of lignin derivatives from biorefining processes.  相似文献   
993.
Halomonas zhanjiangensis Chen et al. 2009 is a member of the genus Halomonas, family Halomonadaceae, class Gammaproteobacteria. Representatives of the genus Halomonas are a group of halophilic bacteria often isolated from salty environments. The type strain H. zhanjiangensis JSM 078169T was isolated from a sea urchin (Hemicentrotus pulcherrimus) collected from the South China Sea. The genome of strain JSM 078169T is the fourteenth sequenced genome in the genus Halomonas and the fifteenth in the family Halomonadaceae. The other thirteen genomes from the genus Halomonas are H. halocynthiae, H. venusta, H. alkaliphila, H. lutea, H. anticariensis, H. jeotgali, H. titanicae, H. desiderata, H. smyrnensis, H. salifodinae, H. boliviensis, H. elongata and H stevensii. Here, we describe the features of strain JSM 078169T, together with the complete genome sequence and annotation from a culture of DSM 21076T. The 4,060,520 bp long draft genome consists of 17 scaffolds with the 3,659 protein-coding and 80 RNA genes and is a part of Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project.  相似文献   
994.
995.
Staphylococcus aureus is one of the major causative agents of severe infections, and is responsible for a high burden of morbidity and mortality. Strains of increased virulence have emerged (e.g. USA300) that can infect healthy individuals in the community and are difficult to treat. To add to the knowledge about the pathophysiology of S. aureus, the adaption to iron restriction, an important in vivo stressor, was studied and the corresponding immune response of the human host characterized. Using a combination of 1D and 2D immune proteomics, the human antibody response to the exoproteomes of S. aureus USA300Δspa grown under iron restriction or with excess iron was compared. Human antibody binding to the altered exoproteome under iron restriction showed a 2.7‐ to 6.2‐fold increase in overall signal intensity, and new antibody specificities appeared. Quantification of the secreted bacterial proteins by gel‐free proteomics showed the expected strong increase in level of proteins involved in iron acquisition during iron‐restricted growth compared to iron access. This was accompanied by decreased levels of superantigens and hemolysins. The latter was corroborated by functional peripheral blood mononuclear cell proliferation assays. The present data provide a comprehensive view of S. aureus exoproteome adaptation to iron restriction. Adults have high concentrations of serum antibodies specific for some of the newly induced proteins. We conclude that iron restriction is a common feature of the microenvironment, where S. aureus interacts with the immune system of its human host.  相似文献   
996.
997.
A pearl millet inbred germplasm association panel (PMiGAP) comprising 250 inbred lines, representative of cultivated germplasm from Africa and Asia, elite improved open-pollinated cultivars, hybrid parental inbreds and inbred mapping population parents, was recently established. This study presents the first report of genetic diversity in PMiGAP and its exploitation for association mapping of drought tolerance traits. For diversity and genetic structure analysis, PMiGAP was genotyped with 37 SSR and CISP markers representing all seven linkage groups. For association analysis, it was phenotyped for yield and yield components and morpho-physiological traits under both well-watered and drought conditions, and genotyped with SNPs and InDels from seventeen genes underlying a major validated drought tolerance (DT) QTL. The average gene diversity in PMiGAP was 0.54. The STRUCTURE analysis revealed six subpopulations within PMiGAP. Significant associations were obtained for 22 SNPs and 3 InDels from 13 genes under different treatments. Seven SNPs associations from 5 genes were common under irrigated and one of the drought stress treatments. Most significantly, an important SNP in putative acetyl CoA carboxylase gene showed constitutive association with grain yield, grain harvest index and panicle yield under all treatments. An InDel in putative chlorophyll a/b binding protein gene was significantly associated with both stay-green and grain yield traits under drought stress. This can be used as a functional marker for selecting high yielding genotypes with ‘stay green’ phenotype under drought stress. The present study identified useful marker-trait associations of important agronomics traits under irrigated and drought stress conditions with genes underlying a major validated DT-QTL in pearl millet. Results suggest that PMiGAP is a useful panel for association mapping. Expression patterns of genes also shed light on some physiological mechanisms underlying pearl millet drought tolerance.  相似文献   
998.
Plasminogen-deficient (FVB/NPan-plgtm1Jld, plgtm1Jld) mice, which are widely used as a wound-healing model, are prone to spontaneous rectal prolapses. The aims of this study were 1) to evaluate the fecal microbiome of plgtm1Jld mice for features that might contribute to the development of rectal prolapses and colonic inflammation and 2) to assess the relevance of the inflammatory phenotype to the variability in wound healing in this model. The plgtm1Jld mice exhibited delayed wound healing, and they could be divided into 3 distinct groups that differed according to the time until wound closure. Colonic lesions in plgtm1Jld mice, which were characterized by necrotizing ulcerations and cystically dilated glands, were restricted to the intermediate and distal parts of the colon. The cytokine profile was indicative of chronic tissue damage, but the genetic modification did not change the composition of the gut microbiota, and none of the clinical or biochemical parameters correlated with the gut microbiota composition.Several studies using plasminogen-deficient (plgtmJld) mice have demonstrated that plasminogen, the proenzyme of plasmin, can degrade fibrin and other extracellular matrix proteins.44 Plasminogen is essential for wound healing in skin,40 which begins with inflammation, followed by epithelial proliferation, and thereafter tissue remodeling. Because the migrating keratinocytes of plgtm1Jld mice have a decreased ability to dissect the platelet-rich fibrin matrix, they exhibit severely impaired wound healing.15,40 In addition, plasmin mediates various pathologic processes, such as tumor growth and cancer metastasis,8 and therapeutic intervention related to plasminogen has shown encouraging results in experimental tumors.31 Therefore, one important application of these mice is the induction of wound healing to study basic mechanistic functions of plasmin, such as the clearance of the extracellular matrix and activation of tumor growth factors.31Spontaneous rectal prolapse and colonic ulceration in plgtm1Jld mice compromise studies using these mice by leading to loss of body weight (wasting disease)6 and wellbeing-related, early study termination.6 Like other inflammatory conditions, rectal prolapse and chronic colonic inflammation might affect wound healing and contribute to the wide interindividual variation in the wound-healing processes of plgtm1Jld mice.28,40The development of rectal prolapses and colonic ulcerations in plgtm1Jld mice reportedly is due to vascular occlusion.6 This pathologic condition is alleviated by superimposing fibrinogen deficiency on plasminogen deficiency, suggesting that fibrin is the primary substrate for plasmin.7,15 The wide variation in effective tissue remodeling during the wound healing of plasminogen-deficient mice remains unexplained.Wound healing depends to a large extent on cells and factors of the immune system.3,53 We previously have shown that disease development in mouse models for various inflammatory conditions, including type 1 diabetes,17-19,35 type 2 diabetes,4,13,42 atopic dermatitis30 and inflammatory bowel disease,20 is influenced by the composition of gut microbiota. Therefore, gut inflammation can be presumed to interfere with wound healing and thus may increase the uncontrolled interindividual variation in these models. In addition, gut inflammatory conditions in humans, such as inflammatory bowel disease43 and irritable bowel syndrome,23 are linked to dysbiosis in the intestine. In mice deficient in IL10 or IL2 and in rats carrying HLA-B27,52 inflammatory bowel disease can be alleviated by germ-free status10,49,52 or ampicillin.20 However, the possible role of the gut microbiome in rectal prolapse, colonic lesions, and wound healing in plasminogen-deficient mice has not previously been assessed.The aims of the current study were 1) to evaluate the fecal microbiome of plgtm1Jld mice and their unaffected WT littermates for features that might contribute to their rectal prolapse and colonic inflammation phenotypes and 2) to assess the relevance of the inflammatory phenotype to the variability in wound healing in this model.  相似文献   
999.

Aim

Cardiac inflammation is important in the pathogenesis of heart failure. However, the consequence of systemic inflammation on concomitant established heart failure, and in particular diastolic heart failure, is less explored. Here we investigated the impact of systemic inflammation, caused by sustained Toll-like receptor 9 activation, on established diastolic heart failure.

Methods and Results

Diastolic heart failure was established in 8–10 week old cardiomyocyte specific, inducible SERCA2a knock out (i.e., SERCA2a KO) C57Bl/6J mice. Four weeks after conditional KO, mice were randomized to receive Toll-like receptor 9 agonist (CpG B; 2μg/g body weight) or PBS every third day. After additional four weeks, echocardiography, phase contrast magnetic resonance imaging, histology, flow cytometry, and cardiac RNA analyses were performed. A subgroup was followed, registering morbidity and death. Non-heart failure control groups treated with CpG B or PBS served as controls. Our main findings were: (i) Toll-like receptor 9 activation (CpG B) reduced life expectancy in SERCA2a KO mice compared to PBS treated SERCA2a KO mice. (ii) Diastolic function was lower in SERCA2a KO mice with Toll-like receptor 9 activation. (iii) Toll-like receptor 9 stimulated SERCA2a KO mice also had increased cardiac and systemic inflammation.

Conclusion

Sustained activation of Toll-like receptor 9 causes cardiac and systemic inflammation, and deterioration of SERCA2a depletion-mediated diastolic heart failure.  相似文献   
1000.
Stress-induced apoptosis is mediated primarily through the intrinsic pathway that involves caspase-9. We previously reported that in caspase-9-deficient cells, a protein complex containing ATG5 and Fas-associated death domain (FADD) facilitated caspase-8 activation and cell death in response to endoplasmic reticulum (ER) stress. Here, we investigated whether this complex could be activated by other forms of cell stress. We show that diverse stress stimuli, including etoposide, brefeldin A and paclitaxel, as well as heat stress and gamma-irradiation, caused formation of a complex containing ATG5-ATG12, FADD and caspase-8 leading to activation of downstream caspases in caspase-9-deficient cells. We termed this complex the ‘stressosome’. However, in these cells, only ER stress and heat shock led to stressosome-dependent cell death. Using in silico molecular modelling, we propose the structure of the stressosome complex, with FADD acting as an adaptor protein, interacting with pro-caspase-8 through their respective death effector domains (DEDs) and interacting with ATG5-ATG12 through its death domain (DD). This suggests that the complex could be regulated by cellular FADD-like interleukin-1β-converting enzyme–inhibitory protein (cFLIPL), which was confirmed experimentally. This study provides strong evidence for an alternative mechanism of caspase-8 activation involving the stressosome complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号