首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23113篇
  免费   2608篇
  国内免费   7882篇
  2024年   168篇
  2023年   561篇
  2022年   1070篇
  2021年   1448篇
  2020年   1233篇
  2019年   1412篇
  2018年   1058篇
  2017年   929篇
  2016年   1087篇
  2015年   1585篇
  2014年   2065篇
  2013年   1940篇
  2012年   2458篇
  2011年   2444篇
  2010年   1668篇
  2009年   1568篇
  2008年   1745篇
  2007年   1584篇
  2006年   1443篇
  2005年   1193篇
  2004年   927篇
  2003年   777篇
  2002年   681篇
  2001年   525篇
  2000年   532篇
  1999年   354篇
  1998年   210篇
  1997年   137篇
  1996年   128篇
  1995年   103篇
  1994年   75篇
  1993年   67篇
  1992年   65篇
  1991年   68篇
  1990年   35篇
  1989年   37篇
  1988年   34篇
  1987年   31篇
  1986年   22篇
  1985年   46篇
  1984年   22篇
  1983年   13篇
  1982年   22篇
  1981年   13篇
  1980年   3篇
  1978年   3篇
  1972年   1篇
  1965年   2篇
  1950年   6篇
  1938年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
992.
Diabetic retinopathy (DR) remains the leading cause of blindness in adults with diabetes mellitus. Numerous microRNAs (miRNAs) have been identified to modulate the pathogenesis of DR. The main purpose of this study was to evaluate the potential roles of miR-455-5p in high glucose (HG)-treated retinal pigment epithelial (RPE) cells and underlying mechanisms. Our present investigation discovered that the expression of miR-455-5p was apparently downregulated in ARPE-19 cells stimulated with HG. In addition, forced expression of miR-455-5p markedly enhanced cell viability and restrained HG-induced apoptosis accompanied by decreased BCL2-associated X protein (Bax)/B-cell leukemia/lymphoma 2 (Bcl-2) ratio and expression of apoptotic marker cleaved caspase-3 during HG challenged. Subsequently, augmentation of miR-455-5p remarkably alleviated HG-triggered oxidative stress injury as reflected by decreased the production of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) content as well as NADPH oxidase 4 expression, concomitant with enhanced the activities of superoxide dismutase, catalase, and GPX stimulated with HG. Furthermore, enforced expression of miR-455-5p effectively ameliorated HG-stimulated inflammatory response as exemplified by repressing the secretion of inflammatory cytokines interleukin 1β (IL-1β), IL-6, and tumour necrosis factor-α in ARPE-19 cells challenged by HG. Most importantly, we successfully identified suppressor of cytokine signaling 3 (SOCS3) as a direct target gene of miR-455-5p, and miR-455-5p negatively regulated the expression of SOCS3. Mechanistically, restoration of SOCS3 abrogated the beneficial effects of miR-455-5p on apoptosis, accumulation of ROS, and inflammatory factors production in response to HG. Taken together, these findings demonstrated that miR-455-5p relieved HG-induced damage through repressing apoptosis, oxidant stress, and inflammatory response by targeting SOCS3. The study gives evidence that miR-455-5p may serve as a new potential therapeutic agent for DR treatment.  相似文献   
993.
Non-small-cell lung cancer (NSCLC) is one of the main causes of death induced by cancer globally. However, the molecular aberrations in NSCLC patients remain unclearly. In the present study, four messenger RNA microarray datasets (GSE18842, GSE40275, GSE43458, and GSE102287) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between NSCLC tissues and adjacent lung tissues were obtained from GEO2R and the overlapping DEGs were identified. Moreover, functional and pathway enrichment were performed by Funrich, while the protein–protein interaction (PPI) network construction were obtained from STRING and hub genes were visualized and identified by Cytoscape software. Furthermore, validation, overall survival (OS) and tumor staging analysis of selected hub genes were performed by GEPIA. A total of 367 DEGs (95 upregulated and 272 downregulated) were obtained through gene integration analysis. The PPI network consisted of 94 nodes and 1036 edges in the upregulated DEGs and 272 nodes and 464 edges in the downregulated DEGs, respectively. The PPI network identified 46 upregulated and 27 downregulated hub genes among the DEGs, and six (such as CENPE, NCAPH, MYH11, LRRK2, HSD17B6, and A2M) of that have not been identified to be associated with NSCLC so far. Moreover, the expression differences of the mentioned hub genes were consistent with that in lung adenocarcinoma and lung squamous cell carcinoma in the TCGA database. Further analysis showed that all the six hub genes were associated with tumor staging except MYH11, while only the upregulated DEG CENPE was associated with the worse OS of patients with NSCLC. In conclusion, the current study showed that CENPE, NCAPH, MYH11, LRRK2, HSD17B6, and A2M might be the key genes contributed to tumorigenesis or tumor progression in NSCLC, further functional study is needed to explore the involved mechanisms.  相似文献   
994.
Bax triggers cell apoptosis by permeabilizing the outer mitochondrial membrane, leading to membrane potential loss and cytochrome c release. However, it is unclear if proteasomal degradation of Bax is involved in the apoptotic process, especially in heart ischemia-reperfusion (I/R)-induced injury. In the present study, KPC1 expression was heightened in left ventricular cardiomyocytes of patients with coronary heart disease (CHD), in I/R-myocardium in vivo and in hypoxia and reoxygenation (H/R)-induced cardiomyocytes in vitro. Overexpression of KPC1 reduced infarction size and cell apoptosis in I/R rat hearts. Similarly, the forced expression of KPC1 restored mitochondrial membrane potential (MMP) and cytochrome c release driven by H/R in H9c2 cells, whereas reducing cell apoptosis, and knockdown of KPC1 by short-hairpin RNA (shRNA) deteriorated cell apoptosis induced by H/R. Mechanistically, forced expression of KPC1 promoted Bax protein degradation, which was abolished by proteasome inhibitor MG132, suggesting that KPC1 promoted proteasomal degradation of Bax. Furthermore, KPC1 prevented basal and apoptotic stress-induced Bax translocation to mitochondria. Bax can be a novel target for the antiapoptotic effects of KPC1 on I/R-induced cardiomyocyte apoptosis and render mechanistic penetration into at least a subset of the mitochondrial effects of KPC1.  相似文献   
995.
Breast cancer (BC) is the most prevalent malignant cancer in the world, is the leading cause of cancer-related death female. Recently, there is accumulating evidence that long noncoding RNAs (lncRNAs) might as an important role in the progression of BC. (epithelial-mesenchymal transition (EMT) is considered to play a vital role in tumor cells migration and invasion. Nevertheless, the entire biological mechanisms and functions of lncRNAs in tumor migration, invasion, and EMT remain uncertain. In the present research, we observed that the expression of lncRNA AC073284.4 was downregulated in BC paclitaxel-resistant (PR) cells (MCF-7/PR) and tissues. Bioinformatics analysis predicted that miR-18b-5p was a direct target of AC073284.4, which has been validated by dual-luciferase reporter gene assay. We further proved that AC073284.4 could directly bind to miR-18b-5p and relieve the suppression for dedicator of cytokinesis protein 4 (DOCK4). Furthermore, the underlying functional experiments demonstrated that AC073284.4 might sponge miR-18b-5p to attenuate the invasion, metastasis, and EMT of BC cell through upregulating DOCK4 expression. In summary, AC073284.4 might serve as a competing endogenous RNA (ceRNA) in BC progression via modulating miR-18b-5p/DOCK4 axis, which weakens EMT and migration of BC. These results suggesting that AC073284.4 might function as a potential novel diagnostic biomarker in the progression of BC.  相似文献   
996.
Ganoderma lucidum immunomodulatory protein (FIP-glu) is an active ingredient with potential immunoregulatory functions. The study was conducted to explore the immunomodulatory activities of recombinant FIP-glu (rFIP-glu) and its possible mechanism in macrophage RAW264.7 cells. In vitro assays of biological activity indicated that rFIP-glu significantly activated RAW264.7 cells and possessed proinflammatory and anti-inflammatory abilities. RNA sequencing analysis and Western blot analysis showed that macrophage activation involved PI3K/Akt and MAPK pathways. Furthermore, real-time quantitative polymerase chain reaction indicated that the PI3K inhibitor LY294002 blocked the messenger RNA (mRNA) levels of MCP-1 (CCL-2), the MEK1/2 inhibitor U0126 reduced the mRNA levels of TNF-α and MCP-1 (CCL-2), and the JNK1/2/3 inhibitor SP600125 prevented the upregulation of inducible nitric oxide synthase mRNA in rFIP-glu-induced cells. rFIP-glu did not mediate these inflammatory effects through a general pathway but rather through a different pathway for a different inflammatory mediator. These data imply that rFIP-glu possessed immunomodulatory activity in macrophages, which was mediated through PI3K/Akt and MAPK pathways.  相似文献   
997.
MicroRNAs (miRNAs) have been established to regulate skeletal muscle development in mammals. However, few studies have been conducted on the regulation of proliferation and differentiation of bovine myoblast cells by miRNAs. The aim of our study was to explore the function of miR-483 in cell proliferation and differentiation of bovine myoblast. Here, we found that miR-483 declined in both proliferation and differentiation stages of bovine myoblast cells. During the proliferation phase, the overexpression of miR-483 downregulated the cell cycle–associated genes cyclin-dependent kinase 2 (CDK2), proliferating cell nuclear antigen (PCNA) messenger RNA (mRNA), and the protein levels. At the cellular level, cell cycle, cell counting kit-8, and 5-ethynyl-2´-deoxyuridine results indicated that the overexpression of miR-483 block cell proliferation. During differentiation, the overexpression of miR-483 led to a decrease in the levels of the myogenic marker genes MyoD1 and MyoG mRNA and protein. Furthermore, the immunofluorescence analysis results showed that the number of MyHC-positive myotubes was reduced. In contrast, the opposite experimental results were obtained concerning both proliferation and differentiation after the inhibition of miR-483. Mechanistically, we demonstrated that miR-483 target insulin-like growth factor 1 (IGF1) and downregulated the expression of key proteins in the PI3K/AKT signaling pathway. Altogether, our findings indicate that miR-483 acts as a negative regulator of bovine myoblast cell proliferation and differentiation.  相似文献   
998.
Bile duct cancer (BDC), also known as cholangiocarcinoma, is a highly desmoplastic cancer with a growth pattern characterized by periductal extension and infiltration. Studies have suggested that microRNAs (miRNAs) play an important role in BDC progression. Here we aim at investigating the effects of miR-329 on BDC development, focusing especially on epithelial-to-mesenchymal transition (EMT) in vitro and lymph node metastasis in vivo. Expression microarrays associated with BDC tissues were collected and differentially expressed genes were analyzed, followed by miRNA target prediction and verification. The role miR-329 played in BDC was examined using gain-of-function and loss-of-function methods. The expressions of miR-329, laminin subunit beta 3 (LAMB3), and EMT markers, in addition to cell proliferation, migration, and invasion were evaluated. Furthermore, nude mice models of BDC were established to observe tumor growth and metastatic lymph nodes. The LAMB3 was identified as an upregulated gene based on the GSE77984 and GSE45001 microarray analysis. LAMB3 was also predicted and confirmed to be a target gene of miR-329 by dual-luciferase reporter assay. Through further cell experiments, the EMT process was reversed, cell proliferation, invasion, and migration were suppressed, when miR-329 was upregulated. Furthermore, in vivo experiments exhibited that the overexpression of miR-329 inhibited tumor growth and the number of metastatic lymph nodes. This study provides in vivo and in vitro evidence that miR-329 inhibits BDC progression through translational repression of LAMB3. Therefore, the obtained results may aid as an experimental basis for improving prognosis of BDC.  相似文献   
999.
Adipocyte growth and development are complex and precisely orchestrated processes. Several microRNAs have been identified as critical regulators of the adipocyte growth and development. Recently, bta-miR-204 was found to be involved in adipogenesis; however, the underlying molecular mechanism involved in bta-miR-204-mediated regulation of proliferation, differentiation, and apoptosis of adipocytes is not fully understood or elucidated. In this study, quantitative real-time polymerase chain reaction (qRT-PCR), Cell Counting Kit-8, EdU, flow cytometer, Oil Red O staining, and the western blot assays were used to assess the role of bta-miR-204 in adipocyte growth and development. Overexpression of bta-miR-204 had no significant effect on 3T3-L1 cell proliferation. The forced expression of bta-miR-204 promoted 3T3-L1 cell differentiation. Meanwhile, overexpression of bta-miR-204 upregulated the expression of Bax and downregulated the expression of Bcl-2 both at messenger RNA and protein levels, which suggested that bta-miR-204 can promote 3T3-L1 cell apoptosis. Using bioinformatic analysis, dual-luciferase reporter system and qRT-PCR, TGFBR2, and ELOVL6 were identified as the direct target genes of bta-miR-204. Therefore, our study provides a novel insight into the role of bta-miR-204 in the regulation of adipocyte growth and development, which may provide a novel therapeutic alternative against obesity.  相似文献   
1000.
Protein regulator of cytokinesis 1 (PRC1) has been reported in correlation with various malignancies. Functionality of PRC1 in nasopharyngeal carcinoma (NPC) was investigated, in perspective of long noncoding RNA (lncRNA) regulatory circuitry. Aberrant expressed messenger RNA and lncRNA were screened out from the Gene Expression Omnibus microarray database. NPC cell line CNE-2 was adopted for in vitro study and transfected with mimic or short hairpin RNA of miR-194-3p and PTPRG-AS1. The radioactive sensitivity, cell viability, migration, invasion, and apoptosis were detected. PTPRG-AS1 and PRC1 were upregulated in NPC, whereas miR-194-3p was downregulated. PTPRG-AS1 was found to specifically bind to miR-194-3p as a competing endogenous RNA and miR-194-3p targets and negatively regulates PRC1. Overexpressed miR-194-3p or silenced PTPRG-AS1 resulted in enhanced sensitivity to radiotherapy and cell apoptosis along with suppressed cell migration, invasion and proliferation in NPC. Furthermore, impaired tumor formation was also caused by miR-194-3p overexpression or PTPRG-AS1 suppression through xenograft tumor in nude mice. In our study, PTPRG-AS1/miR-194-3p/PRC1 regulatory circuitry was revealed in NPC, the mechanism of which can be of clinical significance for treatment of NPC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号