首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32772篇
  免费   3041篇
  国内免费   4318篇
  40131篇
  2024年   118篇
  2023年   535篇
  2022年   1211篇
  2021年   1849篇
  2020年   1402篇
  2019年   1651篇
  2018年   1553篇
  2017年   1113篇
  2016年   1488篇
  2015年   2209篇
  2014年   2694篇
  2013年   2756篇
  2012年   3337篇
  2011年   3112篇
  2010年   1941篇
  2009年   1744篇
  2008年   1913篇
  2007年   1719篇
  2006年   1407篇
  2005年   1122篇
  2004年   938篇
  2003年   814篇
  2002年   663篇
  2001年   403篇
  2000年   394篇
  1999年   371篇
  1998年   264篇
  1997年   212篇
  1996年   196篇
  1995年   139篇
  1994年   161篇
  1993年   90篇
  1992年   117篇
  1991年   101篇
  1990年   83篇
  1989年   56篇
  1988年   46篇
  1987年   28篇
  1986年   19篇
  1985年   44篇
  1984年   18篇
  1983年   18篇
  1982年   19篇
  1981年   5篇
  1980年   5篇
  1978年   7篇
  1973年   6篇
  1972年   4篇
  1968年   3篇
  1965年   9篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
141.
142.
DNaseY, a Ca(2+)- and Mg(2+)-dependent endonuclease, has been implicated in apoptotic DNA degradation; however, the molecular mechanisms controlling its involvement in this process have not been fully elucidated. We have obtained evidence from yeast two-hybrid screening and coimmunoprecipitation experiments that DNaseY interacted physically with actinin-alpha4 and this interaction significantly enhanced its endonuclease activity. Accordingly, simultaneous overexpression of both proteins in PC12 cells dramatically increased the rate of apoptosis in response to teniposide' VM26. However, overexpression of DNaseY alone neither triggered apoptosis nor facilitated cell death in response to VM26 or serum deprivation. Instead, the overexpression of DNaseY increased the production of single-strand DNA breaks and evoked a profound upregulation of DNA repair pathways. Taken together, our results point to a novel regulatory mechanism of DNaseY activity and offer an explanation for why cells must first cleave key DNA repair and replication proteins before the successful execution of apoptosis.  相似文献   
143.
白粉病菌(Blumeria graminis)是一类高度专化性的寄生真菌,可侵染650多种单子叶植物和 9000多种双子叶植物,能够引起多种麦类作物的白粉病,给农业生产带来巨大的损失。由于白粉病菌生理小种多、变异快,所以利用专化性抗病基因难以解决植物的持久抗病性问题。人们在研究大麦白粉病时.发现大麦Mlo基因的隐性突变可导致大麦对绝大多数白粉病菌生理小种的高效持久的广谱抗病性。Schulze-Lefert等多家实验室合作于1997年成功克隆了野生的 Mlo基因。进一步研究表明.该基因编码一种植物特有的具有7个跨膜区和羧基端长尾的膜蛋白(Mlo),它可能对植物细胞的坏死起负调控作用。但Mlo基因如何表达及其在白粉病菌发育中的作用机制尚不清楚。  相似文献   
144.
Passive antibody treatment of macaques prior to simian/human immunodeficiency virus infection produces "sterilizing immunity" in some animals and long-term reductions in viral loads in others. Analysis of viral kinetics suggests that antibody mediates sterilizing immunity by its effects on the initial viral inoculum. By contrast, reduction in peak viral load later in infection prevents CD4 depletion and contributes to long-term viral control.  相似文献   
145.
A novel rutin-α-L-rhamnosidase hydrolyzing α-L-rhamnoside of rutin, naringin, and hesperidin was purified and characterized from Aspergillus niger DLFCC-90, and the gene encoding this enzyme, which is highly homologous to the α-amylase gene, was cloned and expressed in Pichia pastoris GS115. The novel enzyme was classified in glycoside-hydrolase (GH) family 13.  相似文献   
146.
目的探讨CDC2及CLDN5在食管鳞癌中表达及其临床病理特征的关系。方法应用免疫组化Elivision法检测90例食管鳞癌组织、28例正常食管黏膜组织及16例重度不典型增生组织中CDC2和CLDN5的蛋白表达情况。结果在食管鳞癌和正常食管黏膜组织中CDC2和CI。DN5的阳性表达率分别为88.89%(80/90)、85.56%(77/90)和48.86%(12/28)、25.00%(7/28),两者差异有统计学意义(P〈O.05)。CDC2蛋白表达在低分化食管鳞癌中明显高于高分化食管鳞癌;临床分期Ⅲ+Ⅳ期组的CDC2蛋白的表达显著高于I期、Ⅱ期组(P〈O.05)。CDC2和CLDN5在食管鳞癌中表达呈正相关(r=0.537,P〈o.05)。结论CDC2和CLDN5在食管鳞癌的发生、发展过程中可能发挥重要作用,可能作为食管癌临床早期诊断的重要指标。  相似文献   
147.
The HflX‐family is a widely distributed but poorly characterized family of translation factor‐related guanosine triphosphatases (GTPases) that interact with the large ribosomal subunit. This study describes the crystal structure of HflX from Sulfolobus solfataricus solved to 2.0‐Å resolution in apo‐ and GDP‐bound forms. The enzyme displays a two‐domain architecture with a novel “HflX domain” at the N‐terminus, and a classical G‐domain at the C‐terminus. The HflX domain is composed of a four‐stranded parallel β‐sheet flanked by two α‐helices on either side, and an anti‐parallel coiled coil of two long α‐helices that lead to the G‐domain. The cleft between the two domains accommodates the nucleotide binding site as well as the switch II region, which mediates interactions between the two domains. Conformational changes of the switch regions are therefore anticipated to reposition the HflX‐domain upon GTP‐binding. Slow GTPase activity has been confirmed, with an HflX domain deletion mutant exhibiting a 24‐fold enhanced turnover rate, suggesting a regulatory role for the HflX domain. The conserved positively charged surface patches of the HflX‐domain may mediate interaction with the large ribosomal subunit. The present study provides a structural basis to uncover the functional role of this GTPases family whose function is largely unknown. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
148.
Cancer cells are exposed to external and internal stresses by virtue of their unrestrained growth, hostile microenvironment, and increased mutation rate. These stresses impose a burden on protein folding and degradation pathways and suggest a route for therapeutic intervention in cancer. Proteasome and Hsp90 inhibitors are in clinical trials and a 20S proteasome inhibitor, Velcade, is an approved drug. Other points of intervention in the folding and degradation pathway may therefore be of interest. We describe a simple screen for inhibitors of protein synthesis, folding, and proteasomal degradation pathways in this paper. The molecular chaperone-dependent client v-Src was fused to firefly luciferase and expressed in HCT-116 colorectal tumor cells. Both luciferase and protein tyrosine kinase activity were preserved in cells expressing this fusion construct. Exposing these cells to the Hsp90 inhibitor geldanamycin caused a rapid reduction of luciferase and kinase activities and depletion of detergent-soluble v-Src::luciferase fusion protein. Hsp70 knockdown reduced v-Src::luciferase activity and, when combined with geldanamycin, caused a buildup of v-Src::luciferase and ubiquitinated proteins in a detergent-insoluble fraction. Proteasome inhibitors also decreased luciferase activity and caused a buildup of phosphotyrosine-containing proteins in a detergent-insoluble fraction. Protein synthesis inhibitors also reduced luciferase activity, but had less of an effect on phosphotyrosine levels. In contrast, certain histone deacetylase inhibitors increased luciferase and phosphotyrosine activity. A mass screen led to the identification of Hsp90 inhibitors, ubiquitin pathway inhibitors, inhibitors of Hsp70/Hsp40-mediated refolding, and protein synthesis inhibitors. The largest group of compounds identified in the screen increased luciferase activity, and some of these increase v-Src levels and activity. When used in conjunction with appropriate secondary assays, this screen is a powerful cell-based tool for studying compounds that affect protein synthesis, folding, and degradation.  相似文献   
149.

Objectives

To characterize a recombinant carbonyl reductase from Saccharomyces cerevisiae (SceCPR1) and explore its use in asymmetric synthesis of (R)-pantolactone [(R)-PL].

Results

The NADPH-dependent SceCPR1 exhibited strict (R)-enantioselectivity and high activity in the asymmetric reduction of ketopantolactone (KPL) to (R)-PL. Escherichia coli, coexpressing SceCPR1 and glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH), was constructed to fulfill efficient NADPH regeneration. During the whole-cell catalyzed asymmetric reduction of KPL, the spontaneous hydrolysis of KPL significantly affected the yield of (R)-PL, which was effectively alleviated by the employment of the substrate constant-feeding strategy. The established whole-cell bioreduction for 6 h afforded 458 mM (R)-PL with the enantiomeric excess value of >99.9% and the yield of 91.6%.

Conclusions

Escherichia coli coexpressing SceCPR1 and EsGDH efficiently catalyzed the asymmetric synthesis of (R)-PL through the substrate constant-feeding strategy.
  相似文献   
150.
Multi-scale experimental work was carried out to characterize cortical bone as a heterogeneous material with hierarchical structure, which spans from nanoscale (mineralized collagen fibril), sub-microscale (single lamella), microscale (lamellar structures), to mesoscale (cortical bone) levels. Sections from femoral cortical bone from 6, 12, and 42 months old swine were studied to quantify the age-related changes in bone structure, chemical composition, and mechanical properties. The structural changes with age from sub-microscale to mesoscale levels were investigated with scanning electron microscopy and micro-computed tomography. The chemical compositions at mesoscale were studied by ash content method and dual energy X-ray absorptiometry, and at microscale by Fourier transform infrared microspectroscopy. The mechanical properties at mesoscale were measured by tensile testing, and elastic modulus and hardness at sub-microscale were obtained using nanoindentation. The experimental results showed age-related changes in the structure and chemical composition of cortical bone. Lamellar bone was a prevalent structure in 6 months and 12 months old animals, resorption sites were most pronounced in 6 months old animals, while secondary osteons were the dominant features in 42 months old animals. Mineral content and mineral-to-organic ratio increased with age. The structural and chemical changes with age corresponded to an increase in local elastic modulus, and overall elastic modulus and ultimate tensile strength as bone matured.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号