首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19013篇
  免费   1883篇
  国内免费   2600篇
  23496篇
  2024年   65篇
  2023年   294篇
  2022年   720篇
  2021年   1083篇
  2020年   868篇
  2019年   1009篇
  2018年   883篇
  2017年   712篇
  2016年   908篇
  2015年   1316篇
  2014年   1555篇
  2013年   1566篇
  2012年   1980篇
  2011年   1863篇
  2010年   1152篇
  2009年   1004篇
  2008年   1129篇
  2007年   956篇
  2006年   791篇
  2005年   669篇
  2004年   551篇
  2003年   523篇
  2002年   424篇
  2001年   263篇
  2000年   216篇
  1999年   202篇
  1998年   127篇
  1997年   102篇
  1996年   81篇
  1995年   61篇
  1994年   66篇
  1993年   33篇
  1992年   52篇
  1991年   48篇
  1990年   33篇
  1989年   23篇
  1988年   25篇
  1987年   12篇
  1986年   8篇
  1985年   26篇
  1984年   6篇
  1983年   7篇
  1982年   7篇
  1979年   6篇
  1978年   8篇
  1977年   5篇
  1975年   5篇
  1973年   7篇
  1969年   5篇
  1967年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
The mortality of patients with malignant gliomas remains high despite the advancement in multi-modal therapy including surgery, radio- and chemotherapy. Glioma stem cells (GSCs), sharing some characteristics with normal neural stem cells (NSCs), contribute to the cellular origin for primary gliomas and the recurrence of malignant gliomas after current conventional therapy. Accordingly, targeting GSCs proves to be a promising avenue of therapeutic intervention. The specific tropism of NSCs to GSCs provides a novel platform for targeted delivery of therapeutic agents. Tropism and mobilization of NSCs are enhanced by hypoxia through upregulating chemotactic cytokines and activating several signaling pathways. Moreover, hypoxia-inducible factors (HIFs) produced under hypoxic microenvironment of the stem cell niche play critical roles in the growth and stemness phenotypes regulation of both NSCs and GSCs. However, the definite cellular and molecular mechanisms of HIFs involvement in the process remain obscure. In this review, we focus on the pivotal roles of HIFs in migration of NSCs to GSCs and potential roles of HIFs in dictating the fates of migrated NSCs and targeted GSCs.  相似文献   
42.
We sought to determine whether the extrapulmonary origin of fibroblasts derived from bone marrow (BM) progenitor cells is essential to lung fibrosis in bronchopulmonary dysplasia (BPD). Neonate mice were durably engrafted with BM isolated from transgenic reporter mice that expressed green fluorescent protein (GFP). Such chimera mice were subjected to 60% O(2) exposure for 14 days. A large number of fibroblast-specific protein-1 (FSP1) and GFP-positive fibroblasts were identified in active fibrotic lesions. More surprisingly, however, FSP1(+) fibroblasts also arose in considerable numbers from BM-derived alveolar type II cells (AT2) through epithelial-mesenchymal transition (EMT) during lung fibrogenesis. Cultured lung fibroblasts could express the CXC chemokine receptor (CXCR4) and responded chemotactically to their cognate ligand, chemokine (C-X-C motif) ligand 12 (CXCL12), which were elevated in the serum of BPD mice. These data suggest that lung fibroblasts in BPD fibrosis could variably arise from BM progenitor cells. This finding, which suggests the pathophysiological process of fibrosis, could contribute to a therapy for BPD that is characterized by extensive interstitial fibrosis.  相似文献   
43.
In this contribution, a simple, rapid, colorimeteric and selective assay for lysine was achieved by a controllable end-to-end assembly of gold nanorods (AuNRs) in the presence of Eu(3+) and lysine. This one-pot end-to-end assembly of 11-mercaptoundecanoic acid (MUA) modified AuNRs was occurred in Britton-Robinson buffer of pH 6.0, which involves the coordination binding between Eu(3+) and COO(-) groups as well as the electrostatic interaction of the COO(-) groups of MUA with the -NH(3)(+) group of lysine. As monitored by absorption spectra, scanning electron microscopic (SEM) images and dynamic light scattering (DLS) measurement, the end-to-end chain assembly results in large red-shift in the longitudinal plasmon resonance absorption (LPRA), giving red-to-blue color change of AuNRs. Importantly, it was found that the red-shift of LPRA is linearly proportional to the concentrations of lysine in the range of 5.0×10(-6)-1.0×10(-3)M with the limit of detection (LOD) being 1.6×10(-6)M (3σ/k). This red-shift of LPRA is highly selective, making it possible to develop a rapid, selective and visual assay for lysine in food samples.  相似文献   
44.
A major goal in cell signaling research is the quantification of phosphorylation pharmacodynamics following perturbations. Traditional methods of studying cellular phospho-signaling measure one analyte at a time with poor standardization, rendering them inadequate for interrogating network biology and contributing to the irreproducibility of preclinical research. In this study, we test the feasibility of circumventing these issues by coupling immobilized metal affinity chromatography (IMAC)-based enrichment of phosphopeptides with targeted, multiple reaction monitoring (MRM) mass spectrometry to achieve precise, specific, standardized, multiplex quantification of phospho-signaling responses. A multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay targeting phospho-analytes responsive to DNA damage was configured, analytically characterized, and deployed to generate phospho-pharmacodynamic curves from primary and immortalized human cells experiencing genotoxic stress. The multiplexed assays demonstrated linear ranges of ≥3 orders of magnitude, median lower limit of quantification of 0.64 fmol on column, median intra-assay variability of 9.3%, median inter-assay variability of 12.7%, and median total CV of 16.0%. The multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay enabled robust quantification of 107 DNA damage-responsive phosphosites from human cells following DNA damage. The assays have been made publicly available as a resource to the community. The approach is generally applicable, enabling wide interrogation of signaling networks.Cell signaling research is faced with the challenging task of interrogating increasingly large numbers of analytes in “systems biology” approaches, while maintaining the high standards of integrity and reproducibility traditionally associated with the scientific approach. For example, studies interrogating complex systems, such as protein signaling networks, require quantification technologies capable of sensitive, specific, multiplexable, and reproducible application. However, recent reports have highlighted alarmingly high rates of irreproducibility in fundamental biological and pre-clinical studies (1, 2), as well as poor performance of affinity reagents used in traditional proteomic assay and detection platforms (3, 4). There is an imminent need for high quality assays, including highly characterized standards and detailed documentation of processes and procedures (5). To improve the translation of cell signaling discoveries into clinical application, we need reproducible and transferable technologies that enable higher throughput quantification of protein phosphorylation.Signaling dynamics through post-translational modifications (e.g. phosphorylation) are predominantly measured by Western blotting. Although this technique has led to many discoveries and is the de facto “gold standard,” it suffers from many drawbacks. Western blotting is a low throughput approach applied to individual analytes (i.e. no multiplexing) and is susceptible to erroneous interpretation when applied quantitatively (6). Alternative immunoassay platforms have emerged (e.g. immunohistochemistry, ELISA, mass cytometry, and bead-based or planar arrays), but suffer from similar limitations, namely specificity issues (because of cross-reactivity of antibodies), poor standardization, and difficulties in multiplexing.One alternative for quantifying phosphorylation is targeted, multiple reaction monitoring (MRM)1 MS, a widely deployed technique in clinical laboratories for quantification of small molecules (7, 8). MRM is now also well established for precise and specific quantification of endogenous, proteotypic peptides relative to spiked-in stable isotope-labeled internal standards (911), and MRM can be applied to phosphopeptides (1218). MRM assays can be run at high multiplex levels (1921) and can be standardized to be highly reproducible across laboratories (2224), even on an international stage (25). Because phosphorylation typically occurs at sub-stoichiometric levels and because phosphopeptides must compete for ionization with more abundant peptides, mass spectrometry-based analysis of phosphorylation requires an analyte enrichment step. Immuno-affinity enrichment approaches using anti-phospho-tyrosine antibodies (26) or panels of antibodies targeting signaling nodes (27) have been implemented with shotgun mass spectrometry. Although anti-peptide antibodies can also be used to enrich individual phosphopeptides upstream of MRM (28), the generation of these reagents is time-consuming and costly, limiting widespread uptake.Phosphopeptide enrichment based on metal affinity chromatography has recently matured into a reproducible approach (29). Immobilized metal affinity chromatography (IMAC) is widely used in discovery phosphoproteomic studies to enrich phosphopeptides upstream of shotgun-based mass spectrometry (30, 31). We hypothesized that a subset of the cellular phosphoproteome with favorable binding characteristics to the IMAC resin might be reproducibly recovered for quantification when coupled with quantitative MRM mass spectrometry, enabling robust IMAC-MRM assays without the need for an antibody.In this report, we: (1) demonstrate the feasibility of generating analytically robust, multiplex IMAC-MRM assays for quantifying cellular phospho-signaling, (2) present a semi-automated, 96-well format magnetic bead-based protocol for IMAC enrichment, (3) provide a catalogue of phosphopeptides that are highly amenable to IMAC-MRM quantification, and (4) make publicly available standard operating protocols (SOP) and fit-for-purpose analytical validation data for IMAC-MRM assays targeting 107 phospho-analytes, providing a community resource for study of the DNA damage response. The data suggest that the IMAC-MRM approach is generally applicable to signaling pathways, enabling wider interrogation of signaling networks.  相似文献   
45.
Use of historical data and real-world evidence holds great potential to improve the efficiency of clinical trials. One major challenge is to effectively borrow information from historical data while maintaining a reasonable type I error and minimal bias. We propose the elastic prior approach to address this challenge. Unlike existing approaches, this approach proactively controls the behavior of information borrowing and type I errors by incorporating a well-known concept of clinically significant difference through an elastic function, defined as a monotonic function of a congruence measure between historical data and trial data. The elastic function is constructed to satisfy a set of prespecified criteria such that the resulting prior will strongly borrow information when historical and trial data are congruent, but refrain from information borrowing when historical and trial data are incongruent. The elastic prior approach has a desirable property of being information borrowing consistent, that is, asymptotically controls type I error at the nominal value, no matter that historical data are congruent or not to the trial data. Our simulation study that evaluates the finite sample characteristic confirms that, compared to existing methods, the elastic prior has better type I error control and yields competitive or higher power. The proposed approach is applicable to binary, continuous, and survival endpoints.  相似文献   
46.
47.
分别于2012—2013、2013—2014年度越冬期候鸟越冬前(10月份)与越冬后(4月份)采用样方法调查沙湖沉水植物冬芽的种类、密度及生物量,分析不同水位条件的2个年度鄱阳湖碟形子湖沉水植物冬芽的分布及其对食块茎水鸟食物贡献的差异性,探讨越冬水鸟取食与水位变化对沉水植物冬芽分布的影响。结果表明:刺苦草(Vallisneria spinulosa)和罗氏轮叶黑藻(Hydrilla verticillata var.rosburghii)2种沉水植物的冬芽同域分布。2013年10月2种植物冬芽的密度与生物量均显著低于2012年同期,主要原因是鄱阳湖水位年际间变化剧烈,并对水质有显著影响:与2012年相比,2013年丰水期(4—9月)沙湖与主湖区连通的时间和日平均水深显著减小,但水体浊度显著增加,不利于沉水植物生长发育。2012—2013年度越冬水鸟迁出后2种冬芽的密度和生物量均明显下降,而2013—2014年度越冬期水鸟迁出后与迁入前相比两种植物冬芽的密度和生物量均无显著变化,很可能与食块茎水鸟的取食活动和高水位对食物可利用性的负面影响有密切关系。湖泊剧烈的水位变化导致越冬水鸟的食源具有年际波动的特征,而食块茎水鸟对鄱阳湖子湖的食物利用率受越冬季冬芽丰富度和食物可及性(accessibility)的共同影响。研究结果对鄱阳湖乃至长江中下游流域沉水植被恢复、越冬水鸟保护以及生态系统功能评估具有指导意义。  相似文献   
48.
Cultures previously set up for isolation of mycoplasmal agents from blood of patients with poorly-defined illnesses, although not yielding positive results, were cryopreserved because of suspicion of having low numbers of unknown microbes living in an inactive state in the broth. We re-initiated a set of 3 cultures for analysis of the "uncultivable" or poorly-grown microbes using NGS technology. Broth of cultures from 3 blood samples, submitted from OHSU between 2000 and 2004, were inoculated into culture flasks containing fresh modified SP4 medium and kept at room temperature (RT), 30°C and 35°C. The cultures showing evidence of microbial growth were expanded and subjected to DNA analysis by genomic sequencing using Illumina MiSeq. Two of the 3 re-initiated blood cultures kept at RT after 7–8 weeks showed evidence of microbial growth that gradually reached into a cell density with detectable turbidity. The microbes in the broth when streaked on SP4 agar plates produced microscopic colonies in ∼ 2 weeks. Genomic studies revealed that the microbes isolated from the 2 blood cultures were a novel Afipia species, tentatively named Afipia septicemium. Microbes in the 3rd culture (OHSU_III) kept at RT had a limited level of growth and could not reach a plateau with high cell density. Genomic sequencing identified the microbe in the culture as a previously unknown species of Bradyrhizobium bacteria. This study reports on the isolation of novel Afipia and Bradyrhizobium species. Isolation of Bradyrhizobium species bacteria has never been reported in humans. The study also reveals a previously unrecognized nature of hematogenous infections by the 2 unique groups of Bradyrhizobiaceae. Our studies show that improvement of culture system plus effective use of NGS technology can facilitate findings of infections by unusual microbes in patients having poorly-defined, sometimes mysterious illnesses.  相似文献   
49.
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号