首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15325篇
  免费   1457篇
  国内免费   2268篇
  2024年   49篇
  2023年   250篇
  2022年   591篇
  2021年   980篇
  2020年   753篇
  2019年   886篇
  2018年   767篇
  2017年   588篇
  2016年   761篇
  2015年   1106篇
  2014年   1357篇
  2013年   1352篇
  2012年   1636篇
  2011年   1579篇
  2010年   955篇
  2009年   827篇
  2008年   898篇
  2007年   744篇
  2006年   626篇
  2005年   476篇
  2004年   346篇
  2003年   319篇
  2002年   242篇
  2001年   119篇
  2000年   121篇
  1999年   129篇
  1998年   88篇
  1997年   68篇
  1996年   59篇
  1995年   52篇
  1994年   43篇
  1993年   33篇
  1992年   42篇
  1991年   39篇
  1990年   28篇
  1989年   23篇
  1988年   16篇
  1987年   14篇
  1986年   11篇
  1985年   26篇
  1984年   7篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1978年   3篇
  1977年   3篇
  1975年   5篇
  1973年   4篇
  1969年   2篇
  1964年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
121.
The NLR (nucleotide-binding domain leucine-rich repeat containing) proteins serve as regulators of inflammatory signaling pathways. NLRX1, a mitochondria-localized NLR protein, has been previously shown to negatively regulate inflammatory cytokine production activated via the MAVS-DDX58 (RIG-I) pathway. The literature also indicates that DDX58 has a negative impact upon autophagy. Consistent with the inhibitory role of NLRX1 on DDX58, our recent study indicates a role of NLRX1 in augmenting virus-induced autophagy. This effect is through its interaction with another mitochondrial protein TUFM (Tu translation elongation factor, mitochondrial, also known as EF-TuMT, COXPD4, and P43). TUFM also reduces DDX58-activated cytokines but augments autophagy. Additionally it interacts with ATG12–ATG5-ATG16L1 to form a molecular complex that modulates autophagy. The work shows that both NLRX1 and TUFM work in concert to reduce cytokine response and augment autophagy.  相似文献   
122.
Glutathione peroxidase 4 (GPX4) has been confirmed to inhibit ferroptosis in cancer cells, however, whether GPX4 serves as an oncogene is not clear. In this study, the expression of GPX4 and its influence to survival of patients with cancer were analyzed via public databases. Furthermore, the epigenetic regulation of GPX4 and the relation between GPX4 and chemoresistance of different anticancer drugs was also detected. Most importantly, cytological assays were performed to investigate the function of GPX4 in cancer cells. The results showed that GPX4 was higher expressed in cancer tissues than normal and was negatively associated with prognosis of patients. Furthermore, at upstream of GPX4 there was low DNA methylation sites and enhanced level of H3K4me3 and H3K27ac, indicating that high level of GPX4 in cancer may resulted from epigenetic regulation. Moreover, GPX4 was positively related to chemoresistance of anticancer drugs L-685458, lapatinib, palbociclib, and topotecan. In addition, GPX4 may potentially be involved in translation of protein, mitochondrial respiratory chain complex I assembly, electron transport oxidative phosphorylation, nonalcoholic fatty liver disease, and metabolic pathways. Finally, we detected that GPX4 inhibited ferroptosis in cancer cells, the inhibition of GPX4 via RSL3 could enhance the anticancer effect of cisplatin in vitro and in vivo. In conclusion, GPX4 acts as an oncogene and inhibits ferroptosis in cancer cells, the anticancer effect of cisplatin can be enhanced by GPX4 inhibition.  相似文献   
123.
124.
The inhibitory effect of two chemokine decoy receptors (CDRs), DARC and D6, on breast cancer metastasis is mainly due to their ability to sequester pro-malignant chemokines. We hypothesized that genetic variants in the DARC and CCBP2 (encoding D6) genes may be associated with breast cancer progression. In the present study, we evaluated the genetic contributions of DARC and CCBP2 to metastatic potential, indicated by lymph node metastasis (LNM). Ten single-nucleotide polymorphisms (SNPs) (potentially functional SNPs and block-based tagging SNPs) in DARC and CCBP2 were genotyped in 785 breast cancer patients who had negative lymph nodes and 678 patients with positive lymph nodes. Two non-synonymous SNPs, rs12075 (G42D) in DARC and rs2228468 (S373Y) in CCBP2, were observed to be associated with LNM in univariate analysis and remained significant after adjustment for conventional clinical risk factors, with odds ratios (ORs) of 0.54 (95% confidence interval [CI], 0.37 to 0.79) and 0.78 (95% CI, 0.62 to 0.98), respectively. Additional functional experiments revealed that both of these significant SNPs could affect metastasis of breast cancer in xenograft models by differentially altering the chemokine sequestration ability of their corresponding proteins. Furthermore, heterozygous GD genotype of G42D on human erythrocytes had a significantly stronger chemokine sequestration ability than homozygous GG of G42D ex vivo. Our data suggest that the genetic variants in the CDR genes are probably associated with the varied metastatic potential of breast cancer. The underlying mechanism, though it needs to be further investigated, may be that CDR variants could affect the chemokine sequestration ability of CDR proteins.  相似文献   
125.
126.
127.
128.
129.
In multicellular organisms, the balance between cell division and differentiation determines organ size, and represents a central unknown in developmental biology. In Arabidopsis roots, this balance is mediated between cytokinin and auxin through a regulatory circuit converging on the IAA3/SHORT HYPOCOTYL 2 (SHY2) gene. Here, we show that crosstalk between brassinosteroids (BRs) and auxin occurs in the vascular transition zone to promote root meristem development. We found that BR increases root meristem size by up‐regulating expression of the PINFORMED 7 (PIN7) gene and down‐regulating expression of the SHY2 gene. In addition, BES1 could directly bind to the promoter regions of both PIN7 and SHY2, indicating that PIN7 and SHY2 mediate the BR‐induced growth of the root meristem by serving as direct targets of BES1. Moreover, the PIN7 overexpression and loss‐of‐function SHY2 mutant were sensitive to the effects of BR and could partially suppress the short‐root phenotypes associated with deficient BR signaling. Interestingly, BRs could inhibit the accumulation of SHY2 protein in response to cytokinin. Taken together, these findings suggest that a complex equilibrium model exists in which regulatory interactions among BRs, auxin, and cytokinin regulate optimal root growth.  相似文献   
130.
Low molecular weight secreted peptides have recently been shown to affect multiple aspects of plant growth, development, and defense responses.Here, we performed stepwise BLAST filtering to identify unannotated peptides from the Arabidopsis thaliana protein database and uncovered a novel secreted peptide family, secreted transmembrane peptides(STMPs). These low molecular weight peptides, which consist of an N-terminal signal peptide and a transmembrane domain, were primarily localized to extracellular compartments but were also detected in the endomembrane system of the secretory pathway, including the endoplasmic reticulum and Golgi. Comprehensive bioinformatics analysis identified 10 STMP family members that are specific to the Brassicaceae family. Brassicaceae plants showed dramatically inhibited root growth uponexposure to chemically synthesized STMP1 and STMP2.Arabidopsis overexpressing STMP1, 2, 4, 6, or 10 exhibited severely arrested growth, suggesting that STMPs are involved in regulating plant growth and development. In addition, in vitro bioassays demonstrated that STMP1,STMP2, and STMP10 have antibacterial effects against Pseudomonas syringae pv. tomato DC3000, Ralstonia solanacearum, Bacillus subtilis, and Agrobacterium tumefaciens, demonstrating that STMPs are antimicrobial peptides. These findings suggest that STMP family members play important roles in various developmental events and pathogen defense responses in Brassicaceae plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号