首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7927篇
  免费   714篇
  国内免费   560篇
  2024年   20篇
  2023年   114篇
  2022年   279篇
  2021年   448篇
  2020年   299篇
  2019年   349篇
  2018年   325篇
  2017年   233篇
  2016年   385篇
  2015年   509篇
  2014年   654篇
  2013年   595篇
  2012年   714篇
  2011年   606篇
  2010年   421篇
  2009年   333篇
  2008年   413篇
  2007年   398篇
  2006年   290篇
  2005年   250篇
  2004年   198篇
  2003年   188篇
  2002年   134篇
  2001年   140篇
  2000年   129篇
  1999年   146篇
  1998年   88篇
  1997年   77篇
  1996年   67篇
  1995年   48篇
  1994年   56篇
  1993年   31篇
  1992年   49篇
  1991年   39篇
  1990年   23篇
  1989年   31篇
  1988年   22篇
  1987年   29篇
  1986年   13篇
  1985年   20篇
  1984年   12篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1965年   1篇
排序方式: 共有9201条查询结果,搜索用时 109 毫秒
951.
952.
Cholangiocarcinoma, also known as bile duct cancer, is the second most common primary hepatic carcinoma with a median survival of less than 2 years. The molecular mechanisms underlying the development of this disease are not clear. To survey activated tyrosine kinases signaling in cholangiocarcinoma, we employed immunoaffinity profiling coupled to mass spectrometry and identified DDR1, EPHA2, EGFR, and ROS tyrosine kinases, along with over 1,000 tyrosine phosphorylation sites from about 750 different proteins in primary cholangiocarcinoma patients. Furthermore, we confirmed the presence of ROS kinase fusions in 8.7% (2 out of 23) of cholangiocarcinoma patients. Expression of the ROS fusions in 3T3 cells confers transforming ability both in vitro and in vivo, and is responsive to its kinase inhibitor. Our data demonstrate that ROS kinase is a promising candidate for a therapeutic target and for a diagnostic molecular marker in cholangiocarcinoma. The identification of ROS tyrosine kinase fusions in cholangiocarcinoma, along with the presence of other ROS kinase fusions in lung cancer and glioblastoma, suggests that a more broadly based screen for activated ROS kinase in cancer is warranted.  相似文献   
953.
Meng S  Liu Z  Xu L  Li L  Mei S  Bao L  Deng W  Li L  Lei R  Xie L  Qin C  Zhang L 《PloS one》2011,6(5):e19863

Background

Pandemic influenza represents a major threat to global health. Vaccination is the most economic and effective strategy to control influenza pandemic. Conventional vaccine approach, despite being effective, has a number of major deficiencies including limited range of protection, total dependence on embryonated eggs for production, and time consuming for vaccine production. There is an urgent need to develop novel vaccine strategies to overcome these deficiencies.

Methodology/Principal Findings

The major objective of this work was to develop a novel vaccine strategy combining recombinant haemagglutinin (HA) protein and a master cell (MC) activator C48/80 for intranasal immunization. We demonstrated in BALB/c mice that MC activator C48/80 had strong adjuvant activity when co-administered with recombinant HA protein intranasally. Vaccination with C48/80 significantly increased the serum IgG and mucosal surface IgA antibody responses against HA protein. Such increases correlated with stronger and durable neutralizing antibody activities, offering protection to vaccinated animals from disease progression after challenge with lethal dose of A/California/04/2009 live virus. Furthermore, protected animals demonstrated significant reduction in lung virus titers, minimal structural alteration in lung tissues as well as higher and balanced production of Th1 and Th2 cytokines in the stimulated splenocytes when compared to those without C48/80.

Conclusions/Significance

The present study demonstrates that the novel vaccine approach of combining recombinant HA and mucosal adjuvant C48/80 is safe and effective in eliciting protective immunity in mice. Future studies on the mechanism of action of C48/80 and potential combination with other vaccine strategies such as prime and boost approach may help to induce even more potent and broad immune responses against viruses from various clades.  相似文献   
954.
955.
Luo Y  Spurlock F  Deng X  Gill S  Goh K 《PloS one》2011,6(4):e18234
Field-scale environmental models have been widely used in aquatic exposure assessments of pesticides. Those models usually require a large set of input parameters and separate simulations for each pesticide in evaluation. In this study, a simple use-exposure relationship is developed based on regression analysis of stochastic simulation results generated from the Pesticide Root-Zone Model (PRZM). The developed mathematical relationship estimates edge-of-field peak concentrations of pesticides from aerobic soil metabolism half-life (AERO), organic carbon-normalized soil sorption coefficient (KOC), and application rate (RATE). In a case study of California crop scenarios, the relationships explained 90-95% of the variances in the peak concentrations of dissolved pesticides as predicted by PRZM simulations for a 30-year period. KOC was identified as the governing parameter in determining the relative magnitudes of pesticide exposures in a given crop scenario. The results of model application also indicated that the effects of chemical fate processes such as partitioning and degradation on pesticide exposure were similar among crop scenarios, while the cross-scenario variations were mainly associated with the landscape characteristics, such as organic carbon contents and curve numbers. With a minimum set of input data, the use-exposure relationships proposed in this study could be used in screening procedures for potential water quality impacts from the off-site movement of pesticides.  相似文献   
956.
957.
958.
959.
Deng WM 《遗传学报》2011,38(10):429-430
Why do some cells not respond to normal control of cell division and become tumorous? Which signals trigger some tumor cells to migrate and colonize other tissues? What genetic factors are responsible for tumorigenesis and cancer development? What environmental factors play a role in cancer formation and progression? In how many ways can our bodies prevent and restrict the growth of cancerous cells?How can we identify and deliver effective drugs to fight cancer? In the fight against cancer,which kills more people than any other disease,these and other questions have long interested researchers from a diverse range of fields.To answer these questions and to fight cancer more effectively,we must increase our understanding of basic cancer biology.Model organisms,including the fruit fly Drosophila melanogaster,have played instrumental roles in our understanding of this devastating disease and the search for effective cures.Drosophila and its highly effective,easy-touse,and ever-expanding genetic tools have contributed toand enriched our knowledge of cancer and tumor formation tremendously.  相似文献   
960.
Li W  Zang B  Liu C  Lu L  Wei N  Cao K  Deng XW  Wang X 《遗传学报》2011,38(11):539-546
The COP9 signalosome (CSN) is a multiprotein complex which participates in diverse cellular and developmental processes.CSN1,one of the subunits of CSN,is essential for assembly of the multiprotein complex via PCI (proteasome,COP9 signalosome and initiation factor 3) domain in the C-terminal half of CSN 1.However,the role of the N-terminal domain (NTD) of CSN 1,which is critical for the function of CSN,is not completely understood.Using a yeast two-hybrid (Y2H) screen,we found that the NTD of CSN1 interacts with TSK-associating protein 1 (TSA1),a reported Ca2+-binding protein.The interaction between CSN1 and TSA1 was confirmed by co-immunoprecipitation in Arabidopsis.tsal mutants exhibited a short hypocotyl phenotype in darkness but were similar to wild-type Arabidopsis under white light,which suggested that TSA1 might regulate Arabidopsis hypocotyl development in the dark.Furthermore,the expression of TSA1 was significantly lower in a csnl null mutant (fus6),while CSN1 expression did not change in a tsal mutant with weak TSA1 expression.Together,these findings suggest a functional relationship between TSA1 and CSN1 in seedling development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号