首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1562篇
  免费   135篇
  国内免费   1篇
  1698篇
  2021年   21篇
  2020年   15篇
  2019年   15篇
  2018年   19篇
  2017年   27篇
  2016年   45篇
  2015年   53篇
  2014年   67篇
  2013年   83篇
  2012年   98篇
  2011年   84篇
  2010年   57篇
  2009年   48篇
  2008年   81篇
  2007年   75篇
  2006年   68篇
  2005年   73篇
  2004年   73篇
  2003年   75篇
  2002年   72篇
  2001年   43篇
  2000年   49篇
  1999年   36篇
  1998年   21篇
  1997年   16篇
  1996年   14篇
  1995年   15篇
  1994年   15篇
  1993年   9篇
  1992年   18篇
  1991年   12篇
  1990年   18篇
  1989年   15篇
  1988年   12篇
  1987年   15篇
  1986年   12篇
  1985年   9篇
  1983年   9篇
  1979年   7篇
  1978年   7篇
  1976年   8篇
  1975年   9篇
  1974年   11篇
  1973年   13篇
  1972年   13篇
  1971年   7篇
  1969年   11篇
  1968年   15篇
  1967年   13篇
  1966年   9篇
排序方式: 共有1698条查询结果,搜索用时 15 毫秒
21.
In most patients with isolated unilateral retinoblastoma, tumor development is initiated by somatic inactivation of both alleles of the RB1 gene. However, some of these patients can transmit retinoblastoma predisposition to their offspring. To determine the frequency and nature of constitutional RB1-gene mutations in patients with isolated unilateral retinoblastoma, we analyzed DNA from peripheral blood and from tumor tissue. The analysis of tumors from 54 (71%) of 76 informative patients showed loss of constitutional heterozygosity (LOH) at intragenic loci. Three of 13 uninformative patients had constitutional deletions. For 39 randomly selected tumors, SSCP, hetero-duplex analysis, sequencing, and Southern blot analysis were used to identify mutations. Mutations were detected in 21 (91%) of 23 tumors with LOH. In 6 (38%) of 16 tumors without LOH, one mutation was detected, and in 9 (56%) of the tumors without LOH, both mutations were found. Thus, a total of 45 mutations were identified in tumors of 36 patients. Thirty-nine of the mutations-including 34 small mutations, 2 large structural alterations, and hypermethylation in 3 tumors-were not detected in the corresponding peripheral blood DNA. In 6 (17%) of the 36 patients, a mutation was detected in constitutional DNA, and 1 of these mutations is known to be associated with reduced expressivity. The presence of a constitutional mutation was not associated with an early age at treatment. In 1 patient, somatic mosaicism was demonstrated by molecular analysis of DNA and RNA from peripheral blood. In 2 patients without a detectable mutation in peripheral blood, mosaicism was suggested because 1 of the patients showed multifocal tumors and the other later developed bilateral retinoblastoma. In conclusion, our results emphasize that the manifestation and transmissibility of retinoblastoma depend on the nature of the first mutation, its time in development, and the number and types of cells that are affected.  相似文献   
22.
While morphologic and biochemical aspects of degenerative joint disease (osteoarthritis [OA]) have been elucidated by numerous studies, the molecular mechanisms underlying the progressive loss of articular cartilage during OA development remain largely unknown. The main focus of the present study was to gain more insight into molecular changes during the very early stages of mechanically induced cartilage degeneration and to relate molecular alterations to histological changes at distinct localizations of the joint. Studies on human articular cartilage are hampered by the difficulty of obtaining normal tissue and early-stage OA tissue, and they allow no progressive follow-up. An experimental OA model in dogs with a slow natural history of OA (Pond-Nuki model) was therefore chosen. Anterior cruciate ligament transection (ACLT) was performed on 24 skeletally mature dogs to induce joint instability resulting in OA. Samples were taken from different joint areas after 6, 12, 24 and 48 weeks, and gene expression levels of common cartilage molecules were quantified in relation to the histological grading (modified Mankin score) of adjacent tissue. Histological changes reflected early progressive degenerative OA. Soon after ACLT, chondrocytes responded to the altered mechanical conditions by significant and stable elevation of collagen type II, collagen type I and YKL40 expression, which persisted throughout the study. In contrast to the mild to moderate histological alterations, these molecular changes were not progressive and were independent of the joint localization (tibia, femur, lateral, medial) and the extent of matrix degeneration. MMP13 remained unaltered until 24 weeks, and aggrecan and tenascinC remained unaltered until 48 weeks after ACLT. These findings indicate that elevated collagen type II, collagen type I and YKL40 mRNA expression levels are early and sensitive measures of ACLT-induced joint instability independent of a certain grade of morphological cartilage degeneration. A second phase of molecular changes in OA may begin around 48 weeks after ACLT with altered expression of further genes, such as MMP13, aggrecan and tenascin. Molecular changes observed in the present study suggest that dog cartilage responds to degenerative conditions by regulating the same genes in a similar direction as that observed for chondrocytes in late human OA.  相似文献   
23.
Increased bone resorption is a major characteristic of multiple myeloma and is caused by osteoclast activation and osteoblast inhibition (uncoupling). Myeloma cells alter the local regulation of bone metabolism by increasing the receptor activator of NF-kappaB ligand (RANKL) and decreasing osteoprotegerin expression within the bone marrow microenvironment, thereby stimulating the central pathway for osteoclast formation and activation. In addition, they produce the chemokines MIP-1alpha, MIP-1beta, and SDF-1alpha, which also increase osteoclast activity. On the other hand, myeloma cells suppress osteoblast function by the secretion of osteoblast inhibiting factors, e.g., the Wnt inhibitors DKK-1 and sFRP-2. Moreover, they inhibit differentiation of osteoblast precursors and induce apoptosis in osteoblasts. The resulting bone destruction releases several cytokines, which in turn promote myeloma cell growth. Therefore, the inhibition of bone resorption could stop this vicious circle and not only decrease myeloma bone disease, but also the tumor progression.  相似文献   
24.
Summary A hypervariable DNA marker is closely linked to one of the most severe forms of night blindness, X-linked retinitis pigmentosa (RP). Affected individuals with X-linked RP, obligate carriers, and ophthalmologically identifiable carriers of the disease were included in a linkage study. The diagnosis was established in five sibships by funduscopic and electrophysiological investigations. When the X-linked probe M27 was used, 2 recombinants out of 29 informative meioses were detected (=0.07 at a maximum lod of 4.75). The hypervariable probe detected two different alleles in 38 of 39 females tested. M27 is therefore a potentially very useful probe for carrier detection and prenatal diagnosis, as well as for addressing the question of heterogeneity of X-linked RP.  相似文献   
25.
PKA (protein kinase A) is tethered to subcellular compartments by direct interaction of its regulatory subunits (RI or RII) with AKAPs (A kinase-anchoring proteins). AKAPs preferentially bind RII subunits via their RII-binding domains. RII-binding domains form structurally conserved amphipathic helices with unrelated sequences. Their binding affinities for RII subunits differ greatly within the AKAP family. Amongst the AKAPs that bind RIIalpha subunits with high affinity is AKAP7delta [AKAP18delta; K(d) (equilibrium dissociation constant) value of 31 nM]. An N-terminally truncated AKAP7delta mutant binds RIIalpha subunits with higher affinity than the full-length protein presumably due to loss of an inhibitory region [Henn, Edemir, Stefan, Wiesner, Lorenz, Theilig, Schmidtt, Vossebein, Tamma, Beyermann et al. (2004) J. Biol. Chem. 279, 26654-26665]. In the present study, we demonstrate that peptides (25 amino acid residues) derived from the RII-binding domain of AKAP7delta bind RIIalpha subunits with higher affinity (K(d)=0.4+/-0.3 nM) than either full-length or N-terminally truncated AKAP7delta, or peptides derived from other RII binding domains. The AKAP7delta-derived peptides and stearate-coupled membrane-permeable mutants effectively disrupt AKAP-RII subunit interactions in vitro and in cell-based assays. Thus they are valuable novel tools for studying anchored PKA signalling. Molecular modelling indicated that the high affinity binding of the amphipathic helix, which forms the RII-binding domain of AKAP7delta, with RII subunits involves both the hydrophobic and the hydrophilic faces of the helix. Alanine scanning (25 amino acid peptides, SPOT technology, combined with RII overlay assays) of the RII binding domain revealed that hydrophobic amino acid residues form the backbone of the interaction and that hydrogen bond- and salt-bridge-forming amino acid residues increase the affinity of the interaction.  相似文献   
26.
Pathogen recognition and signal transduction during plant pathogenesis is essential for the activation of plant defense mechanisms. To facilitate easy access to published data and to permit comparative studies of different pathogen response pathways, a database is indispensable to give a broad overview of the components and reactions so far known. PathoPlant has been developed as a relational database to display relevant components and reactions involved in signal transduction related to plant-pathogen interactions. On the organism level, the tables 'plant', 'pathogen' and 'interaction' are used to describe incompatible interactions between plants and pathogens or diseases. On the molecular level, plant pathogenesis related information is organized in PathoPlant's main tables 'molecule', 'reaction' and 'location'. Signal transduction pathways are modeled as consecutive sequences of known molecules and corresponding reactions. PathoPlant entries are linked to associated internal records as well as to entries in external databases such as SWISS-PROT, GenBank, PubMed, and TRANSFAC. PathoPlant is available as a web-based service at http://www.pathoplant.de.  相似文献   
27.
28.
The protein tyrosine phosphatase Src homology 2 domain-containing phosphatase 1 (SHP-1) has previously been shown to be a negative regulator of signaling mediated via the TCR. A growing body of evidence indicates that the regulated localization of proteins within certain membrane subdomains, referred to as lipid rafts, is important for the successful transduction of signaling events downstream of the TCR. However, considerably less is known about the localization of negative regulators during these lipid raft-dependent signaling events. In this study we have investigated the subcellular localization of SHP-1 and its role in regulation of TCR-mediated signaling. Our studies demonstrate that in a murine T cell hybridoma as well as in primary murine thymocytes, a fraction of SHP-1 localizes to the lipid rafts, both basally and after TCR stimulation. Interestingly, although SHP-1 localized in the nonraft fractions is tyrosine phosphorylated, the SHP-1 isolated from the lipid rafts lacks the TCR-induced tyrosine phosphorylation, suggesting physical and/or functional differences between these two subpopulations. We identify a requirement for the C-terminal residues of SHP-1 in optimal localization to the lipid rafts. Although expression of SHP-1 that localizes to lipid rafts potently inhibits TCR-mediated early signaling events and IL-2 production, the expression of lipid raft-excluded SHP-1 mutants fails to elicit any of the inhibitory effects. Taken together these studies reveal a key role for lipid raft localization of SHP-1 in mediating the inhibitory effects on T cell signaling events.  相似文献   
29.
30.
Calcineurin is a protein phosphatase that is uniquely regulated by sustained increases in intracellular Ca2+ following signal transduction events. Calcineurin controls cellular proliferation, differentiation, apoptosis, and inducible gene expression following stress and neuroendocrine stimulation. In the adult heart, calcineurin regulates hypertrophic growth of cardiomyocytes in response to pathologic insults that are associated with altered Ca2+ handling. Here we determined that calcineurin signaling is directly linked to the proper control of cardiac contractility, rhythm, and the expression of Ca2+-handling genes in the heart. Our approach involved a cardiomyocyte-specific deletion using a CnB1-LoxP-targeted allele in mice and three different cardiac-expressing Cre alleles/transgenes. Deletion of calcineurin with the Nkx2.5-Cre knock-in allele resulted in lethality at 1 day after birth due to altered right ventricular morphogenesis, reduced ventricular trabeculation, septal defects, and valvular overgrowth. Slightly later deletion of calcineurin with the α-myosin heavy chain Cre transgene resulted in lethality in early mid adulthood that was characterized by substantial reductions in cardiac contractility, severe arrhythmia, and reduced myocyte content in the heart. Young calcineurin heart-deleted mice died suddenly after pressure overload stimulation or neuroendocrine agonist infusion, and telemetric monitoring of older mice showed arrhythmia leading to sudden death. Mechanistically, loss of calcineurin reduced expression of key Ca2+-handling genes that likely lead to arrhythmia and reduced contractility. Loss of calcineurin also directly impacted cellular proliferation in the postnatal developing heart. These results reveal multiple mechanisms whereby calcineurin regulates cardiac development and myocyte contractility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号