首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5422篇
  免费   175篇
  5597篇
  2023年   5篇
  2021年   16篇
  2020年   10篇
  2019年   10篇
  2018年   26篇
  2017年   18篇
  2016年   39篇
  2015年   48篇
  2014年   54篇
  2013年   54篇
  2012年   441篇
  2011年   541篇
  2010年   103篇
  2009年   84篇
  2008年   525篇
  2007年   538篇
  2006年   512篇
  2005年   458篇
  2004年   423篇
  2003年   412篇
  2002年   363篇
  2001年   249篇
  2000年   307篇
  1999年   162篇
  1998年   19篇
  1997年   11篇
  1996年   8篇
  1995年   11篇
  1994年   8篇
  1993年   5篇
  1992年   11篇
  1991年   7篇
  1990年   6篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1984年   5篇
  1983年   6篇
  1982年   7篇
  1981年   3篇
  1980年   6篇
  1977年   4篇
  1976年   5篇
  1974年   5篇
  1973年   6篇
  1972年   5篇
  1971年   8篇
  1970年   12篇
  1969年   5篇
  1968年   8篇
排序方式: 共有5597条查询结果,搜索用时 0 毫秒
991.
The NADH:ubiquinone oxidoreductase or complex I of the mitochondrial respiratory chain is an intricate enzyme with a vital role in energy metabolism. Mutations affecting complex I can affect at least three processes; they can impair the oxidation of NADH, reduce the enzyme's ability to pump protons for the generation of a mitochondrial membrane potential and increase the production of damaging reactive oxygen species. We have previously developed a nematode model of complex I-associated mitochondrial dysfunction that features hallmark characteristics of mitochondrial disease, such as lactic acidosis and decreased respiration. We have expressed the Saccharomyces cerevisiae NDI1 gene, which encodes a single subunit NADH dehydrogenase, in a strain of Caenorhabditis elegans with an impaired complex I. Expression of Ndi1p produces marked improvements in animal fitness and reproduction, increases respiration rates and restores mitochondrial membrane potential to wild type levels. Ndi1p functionally integrates into the nematode respiratory chain and mitigates the deleterious effects of a complex I deficit. However, we have also shown that Ndi1p cannot substitute for the absence of complex I. Nevertheless, the yeast Ndi1p should be considered as a candidate for gene therapy in human diseases involving complex I.  相似文献   
992.
Streptomyces coelicolor A3(2) produces several intra and extracellular enzymes with deoxyribonuclease activities. The examined N-terminal amino acid sequence of one of extracellular DNAases (TVTSVNVNGLL) and database search on S. coelicolor genome showed a significant homology to the putative secreted exodeoxyribonuclease. The corresponding gene (exoSc) was amplified, cloned, expressed in Escherichia coli, purified to homogeneity and characterized. Exonuclease recExoSc degraded chromosomal, linear dsDNA with 3'-overhang ends, linear ssDNA and did not digest linear dsDNA with blunt ends, supercoiled plasmid ds nor ssDNA. The substrate specificity of recExoSc was in the order of dsDNA>ssDNA>3'-dAMP. The purified recExoSc was not a metalloprotein and exhibited neither phosphodiesterase nor RNase activity. It acted as 3'-phosphomonoesterase only at 3'-dAMP as a substrate. The optimal temperature for its activity was 57 degrees C in Tris-HCl buffer at optimal pH=7.5 for either ssDNA or dsDNA substrates. It required a divalent cation (Mg(2+), Co(2+), Ca(2+)) and its activity was strongly inhibited in the presence of Zn(2+), Hg(2+), chelating agents or iodoacetate.  相似文献   
993.
A new hydrophobic platinum(IV) complex, LA-12, a very efficient anticancer drug lacking cross-resistance with cisplatin (CDDP), is now being tested in clinical trials. Here we investigated the apoptogenic activity of LA-12 and its effect on gap-junctional intercellular communication (GJIC) in the rat liver epithelial cell line WB-F344. LA-12 induced apoptosis much more efficiently than did CDDP due to a combination of rapid penetration into the cell and attack on DNA, leading to fast activation of p53 and caspase-3. Exposure of WB-F344 cells to LA-12 led to rapid induction of the time- and dose-dependent decrease in GJIC. On the molecular level, loss of GJIC induced by LA-12 was mediated by activation of extracellular signal-regulated kinase (ERK)-1 and ERK-2, as demonstrated by the use of inhibitors of ERK activation. Inhibition of GJIC was linked to rapid hyperphosphorylation of connexin-43 and disappearance of connexon clusters from membranes, which was not observed in the case of CDDP.  相似文献   
994.
Trypanosoma cruzi, the etiological agent of Chagas disease, is an adequate model for studies on the evolution of signal transduction pathways. These pathways involve molecular entities such as membrane receptors, transduction G proteins, protein kinases and second messengers (Ca(2+), cyclic AMP, cyclic GMP, nitric oxide). In this article, Mirtha M. Flawiá, María T. Téllez-I?ón and Héctor N. Torres describe the studies performed on T. cruzi transduction pathways and their role in the control of metacyclogenesis and cell motility.  相似文献   
995.
996.
We assessed the feasibility of fetal RHD and RHCE genotyping by analysis of DNA extracted from plasma samples of RhD-negative pregnant women using real-time PCR and primers and probes targeted toward RHD and RHCE genes. We analyzed 45 pregnant women in the 11th to 40th weeks of pregnancy and correlated the results with serological analysis of cord blood after delivery. Non-invasive prenatal fetal RHD exon 7, RHD exon 10, RHCE exon 2 (C allele), and RHCE exon 5 (E allele) genotyping analysis of maternal plasma samples was correctly performed in 45 out of 45 RhD-negative pregnant women delivering 24 RhD-, 17 RhC-, and 7 RhE-positive newborns. Detection of fetal RHD and the C and E alleles of RHCE gene from maternal plasma is highly accurate and enables implementation into clinical routine. We recommend performing fetal RHD and RHCE genotyping together with fetal sex determination in alloimmunized D-negative pregnancies at risk of hemolytic disease of the newborn. In case of D-negative fetus, amplification of another paternally inherited allele (SRY and/or RhC and/or RhE positivity) proves the presence of fetal DNA in maternal circulation.  相似文献   
997.
Bird schistosomes and cases of human cercarial dermatitis occur worldwide, but the number of cases is not monitored. Experiments with two schistosomes, namely Trichobilharzia szidati and T. regenti, show that they possess potent tools to penetration bird and mammalian skin, as well as exhibit species-specific migration patterns within vertebrate bodies. Therefore, the infections may affect different organs/tissues e.g. lungs or spinal cord. In this minireview, the adaptations and pathogenic effects of bird schistosomes in experimental mammals are discussed, and some ideas/hypotheses on risks to humans from exposure to bird schistosome cercariae are expressed.  相似文献   
998.
Complex I, i.e. proton-pumping NADH:quinone oxidoreductase, is an essential component of the mitochondrial respiratory chain but produces superoxide as a side-reaction. However, conditions for maximum superoxide production or its attenuation are not well understood. Unlike for Complex III, it has not been clear whether a Complex I-derived superoxide generation at forward electron transport is sensitive to membrane potential or protonmotive force. In order to investigate this, we used Amplex Red for H(2)O(2) monitoring, assessing the total mitochondrial superoxide production in isolated rat liver mitochondria respiring at state 4 as well as at state 3, namely with exclusive Complex I substrates or with Complex I substrates plus succinate. We have shown for the first time, that uncoupling diminishes rotenone-induced H(2)O(2) production also in state 3, while similar attenuation was observed in state 4. Moreover, we have found that 5-(N-ethyl-N-isopropyl) amiloride is a real inhibitor of Complex I H(+) pumping (IC(50) of 27 microM) without affecting respiration. It also partially prevented suppression by FCCP of rotenone-induced H(2)O(2) production with Complex I substrates alone (glutamate and malate), but nearly completely with Complexes I and II substrates. Sole 5-(N-ethyl-N-isopropyl) amiloride alone suppressed 20% and 30% of total H(2)O(2) production, respectively, under these conditions. Our data suggest that Complex I mitochondrial superoxide production can be attenuated by uncoupling, which means by acceleration of Complex I H(+) pumping due to the respiratory control. However, when this acceleration is prevented by 5-(N-ethyl-N-isopropyl) amiloride inhibition, no attenuation of superoxide production takes place.  相似文献   
999.
1000.
Sulfotransferases and sulfatases are the major enzymes responsible for sulfate transfer processes. The past two years have seen the elucidation of new functions for these enzymes, and a great progression in their structural characterization, which confirms that these two types of enzymes possess a highly conserved fold. For catalytic activity, sulfatases must contain a formylglycine residue, which is generated by various formylglycine-generating enzymes. Mechanistic and structural details have recently been obtained for a group of cofactor-independent formylglycine-generating enzymes termed FGEs. Finally, an increasing light has been cast upon the mechanism of sulfatase inactivation by a group of clinically important agents, the aryl sulfamates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号