首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7796篇
  免费   621篇
  国内免费   1篇
  8418篇
  2023年   60篇
  2022年   112篇
  2021年   233篇
  2020年   142篇
  2019年   163篇
  2018年   177篇
  2017年   156篇
  2016年   259篇
  2015年   433篇
  2014年   463篇
  2013年   550篇
  2012年   699篇
  2011年   652篇
  2010年   409篇
  2009年   376篇
  2008年   512篇
  2007年   444篇
  2006年   423篇
  2005年   365篇
  2004年   336篇
  2003年   267篇
  2002年   272篇
  2001年   68篇
  2000年   53篇
  1999年   72篇
  1998年   51篇
  1997年   46篇
  1996年   40篇
  1995年   40篇
  1994年   34篇
  1993年   22篇
  1992年   47篇
  1991年   38篇
  1990年   29篇
  1989年   38篇
  1988年   21篇
  1987年   24篇
  1986年   28篇
  1985年   23篇
  1984年   15篇
  1983年   16篇
  1982年   17篇
  1981年   13篇
  1980年   19篇
  1979年   13篇
  1978年   13篇
  1977年   17篇
  1976年   15篇
  1973年   15篇
  1969年   12篇
排序方式: 共有8418条查询结果,搜索用时 15 毫秒
961.
Sex‐determination mechanisms vary both within and among populations of common frogs, opening opportunities to investigate the molecular pathways and ultimate causes shaping their evolution. We investigated the association between sex‐chromosome differentiation (as assayed from microsatellites) and polymorphism at the candidate sex‐determining gene Dmrt1 in two Alpine populations. Both populations harboured a diversity of X‐linked and Y‐linked Dmrt1 haplotypes. Some males had fixed male‐specific alleles at all markers (“differentiated” Y chromosomes), others only at Dmrt1 (“proto‐” Y chromosomes), while still others were genetically indistinguishable from females (undifferentiated X chromosomes). Besides these XX males, we also found rare XY females. The several Dmrt1 Y haplotypes differed in the probability of association with a differentiated Y chromosome, which we interpret as a result of differences in the masculinizing effects of alleles at the sex‐determining locus. From our results, the polymorphism in sex‐chromosome differentiation and its association with Dmrt1, previously inferred from Swedish populations, are not just idiosyncratic features of peripheral populations, but also characterize highly diverged populations in the central range. This implies that an apparently unstable pattern has been maintained over long evolutionary times.  相似文献   
962.
Rhizobia can establish a nitrogen-fixing symbiosis with plants of the Leguminosae family. They elicit on their host plant the formation of new organs, called nodules, which develop on the roots. A few aquatic legumes, however, can form nodules on their stem at dormant root primordia. The stem-nodulating legumes described so far are all members of the genera Aeschynomene, Sesbania, Neptunia, and Discolobium. Their rhizobial symbionts belong to four genera already described: Rhizobium, Bradyrhizobium, Sinorhizobium, and Azorhizobium. This review summarizes our current knowledge on most aspects of stem nodulation in legumes, the infection process and nodule development, the characterization and unusual features of the associated bacteria, and the molecular genetics of nodulation. Potential use as green manure in lowland rice of these stem-nodulating legumes, giving them agronomical importance, is also discussed.  相似文献   
963.
The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.  相似文献   
964.
The marsh frog (Pelophylax ridibundus) has been introduced in many areas in Central and Western Europe as a result of commercial trade with Eastern Europe, and is rapidly replacing the native pool frog (P. lessonae). A large number of Pelophylax species are distributed in Eastern Europe and the strong phenotypic similarity between these species is rendering their identification hazardous. Consequently, alien populations of Pelophylax might not strictly be composed of P. ridibundus as previously suspected. In the present study, we analysed the cytochrome‐b and NADH dehydrogenase subunit 3 genes of introduced and native Pelophylax species from Switzerland (299 individuals) in order to properly identify the source populations of the invaders and the genetic status of the native species. Our study highlighted the occurrence of several genetic lineages of invasive frogs in western Switzerland. Unexpectedly, we also showed that several populations of the native pool frog (P. lessonae) cluster with the Italian pool frog P. bergeri from central Italy (considered by some authors as a subspecies of P. lessonae). Hence, these populations are probably also the result of introductions, meaning that the number of native P. lessonae populations is fewer than expected in Switzerland. These findings have important implications concerning the conservation of the endemic pool frog populations, as the presence of multiple alien species could strongly affect their long‐term subsistence. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 442–449.  相似文献   
965.
Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase E9, the uracil-DNA glycosylase D4 and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase co-factor whose function is essential for processive DNA synthesis. Genetic and biochemical data have established that residues located in the N-terminus of A20 are critical for binding to D4. However, no information regarding the residues of D4 involved in A20 binding is yet available. We expressed and purified the complex formed by D4 and the first 50 amino acids of A20 (D4/A201–50). We showed that whereas D4 forms homodimers in solution when expressed alone, D4/A201–50 clearly behaves as a heterodimer. The crystal structure of D4/A201–50 solved at 1.85 Å resolution reveals that the D4/A20 interface (including residues 167 to 180 and 191 to 206 of D4) partially overlaps the previously described D4/D4 dimer interface. A201–50 binding to D4 is mediated by an α-helical domain with important leucine residues located at the very N-terminal end of A20 and a second stretch of residues containing Trp43 involved in stacking interactions with Arg167 and Pro173 of D4. Point mutations of the latter residues disturb D4/A201–50 formation and reduce significantly thermal stability of the complex. Interestingly, small molecule docking with anti-poxvirus inhibitors selected to interfere with D4/A20 binding could reproduce several key features of the D4/A201–50 interaction. Finally, we propose a model of D4/A201–50 in complex with DNA and discuss a number of mutants described in the literature, which affect DNA synthesis. Overall, our data give new insights into the assembly of the poxvirus DNA polymerase cofactor and may be useful for the design and rational improvement of antivirals targeting the D4/A20 interface.  相似文献   
966.

Background

Glioma is the most aggressive tumor of the brain and the most efficient treatments are based on radiotherapy. However, tumors are often resistant to radiotherapy due to an enhanced DNA repair activity. Short and stabilized DNA molecules (Dbait) have recently been proposed as an efficient strategy to inhibit DNA repair in tumor.

Methodology/Principal Findings

The distribution of three formulations of Dbait, (i) Dbait alone, (ii) Dbait associated with polyethylenimine, and (iii) Dbait linked with cholesterol (coDbait), was evaluated one day after intratumoral delivery in an RG2 rat glioma model. Dbait molecule distribution was assessed in the whole organ with 2D-FRI and in brain sections. CoDbait was chosen for further studies given its good retention in the brain, cellular localization, and efficacy in inducing the activation of DNA repair effectors. The radiosensitizing effect of coDbait was studied in four groups of rats bearing RG2-glioma: no treatment, radiotherapy only, coDbait alone, and CoDbait with radiotherapy. Treatment started 7 days after tumor inoculation and consisted of two series of treatment in two weeks: coDbait injection followed by a selective 6-Gy irradiation of the head. We evaluated the radiosensitizing effect using animal survival, tumor volume, cell proliferation, and vasculature characteristics with multiparametric MRI. CoDbait with radiotherapy improved the survival of rats bearing RG2-glioma by reducing tumor growth and cell proliferation without altering tumor vasculature.

Conclusion/Significance

coDbait is therefore a promising molecular therapy to sensitize glioma to radiotherapy.  相似文献   
967.
968.
The plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus × canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-d-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.Isoprenoids represent the largest and most diverse group (over 50,000) of natural compounds and are essential in all living organisms (Gershenzon and Dudareva, 2007; Thulasiram et al., 2007). They are economically important for humans as flavor and fragrance, cosmetics, drugs, polymers for rubber, and precursors for the chemical industry (Chang and Keasling, 2006). The broad variety of isoprenoid products is formed from two building blocks, dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP). In plants, the plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway (Zeidler et al., 1997) produces physiologically and ecologically important volatile organic compounds (VOCs), the carotenoids (tetraterpenes; Giuliano et al., 2008; Cazzonelli and Pogson, 2010), diterpenes, the prenyl side-chains of chlorophylls (Chls) and plastoquinones, isoprenylated proteins, the phytohormones gibberellins, and side-chain of cytokinins (for review, see Dudareva et al., 2013; Moses et al., 2013). Industrially important prokaryotes (e.g. Escherichia coli) also use the MEP pathway for the biosynthesis of isoprenoids (Vranová et al., 2012), and there is an increasing interest in manipulating the MEP pathway of engineered microbes to increase production of economically relevant isoprenoids (Chang and Keasling, 2006). To achieve this, a mechanistic understanding of the regulation of the MEP pathway is needed (Vranová et al., 2012).Some plants, including poplars (Populus spp.), produce large amounts of the hemiterpene VOC isoprene. Worldwide isoprene emissions from plants are estimated to be 600 teragrams per year and to account for one-third of all hydrocarbons emitted to the atmosphere (Arneth et al., 2008; Guenther, 2013). Isoprene has strong effects on air chemistry and climate by participating in ozone formation reactions (Fuentes et al., 2000), by prolonging the lifespan of methane, a greenhouse gas (Poisson et al., 2000; Archibald et al., 2011), and by taking part in the formation of secondary organic aerosols (Kiendler-Scharr et al., 2012).Poplar leaves invest a significant amount of recently fixed carbon in isoprene biosynthesis (Delwiche and Sharkey, 1993; Schnitzler et al., 2010; Ghirardo et al., 2011) to cope with abiotic stresses (Sharkey, 1995; Velikova and Loreto, 2005; Behnke et al., 2007, 2010b, 2013; Vickers et al., 2009; Loreto and Schnitzler, 2010; Sun et al., 2013b), although there are indications that other protective mechanisms can partially compensate the lack of isoprene emission in genetically transformed poplars (Behnke et al., 2012; Way et al., 2013). It has been suggested that in isoprene-emitting (IE) species, most of the carbon that passes through the MEP pathway is used for isoprene biosynthesis (Sharkey and Yeh, 2001). However, a recent study using pulse-chase labeling with 14C has shown continuous synthesis and degradation of carotenes and Chl a in mature leaves of Arabidopsis (Arabidopsis thaliana; Beisel et al., 2010), and the amount of flux diverted to carotenoid and Chl synthesis compared with isoprene biosynthesis in poplar leaves is not known.Isoprene emission is temperature, light, and CO2 dependent (Schnitzler et al., 2005; Rasulov et al., 2010; Way et al., 2011; Monson et al., 2012; Li and Sharkey, 2013a). It has been demonstrated that isoprene biosynthesis depends on the activities of IDP isomerase (EC 5.3.3.2), isoprene synthase (ISPS; EC 4.2.3.27), and the amount of ISPS substrate, DMADP (Brüggemann and Schnitzler, 2002a, 2002b; Schnitzler et al., 2005; Rasulov et al., 2009b). In turn, DMADP concentration has been hypothesized to act as a feedback regulator of the MEP pathway by inhibiting 1-deoxy-d-xylulose-5-phosphate synthase (DXS; EC 2.2.1.7), the first enzyme of the MEP pathway (Banerjee et al., 2013). Understanding the controlling mechanism of isoprene biosynthesis is not only of fundamental relevance, but also necessary for engineering the MEP pathway in various organisms and for accurate simulation of isoprene emissions by plants in predicting atmospheric reactivity (Niinemets and Monson, 2013).There is ample evidence that silencing the ISPS in poplar has a broad effect on the leaf metabolome (Behnke et al., 2009, 2010a, 2013; Way et al., 2011; Kaling et al., 2014). While some of those changes (e.g. ascorbate and α-tocopherol) are compensatory mechanisms to cope with abiotic stresses, others (e.g. shikimate pathway and phenolic compounds) might be related to the alteration of the MEP pathway (Way et al., 2013; Kaling et al., 2014). The perturbation of these metabolic pathways can be attributed to the removal of a major carbon sink of the MEP pathway and the resulting change in the energy balance within the plant cell (Niinemets et al., 1999; Ghirardo et al., 2011). In this work, we analyzed the carbon fluxes through the MEP pathway into the main plastidic isoprenoid products.We used the 13C-labeling technique as a tool to measure the carbon fluxes through the MEP pathway at different temperatures, light intensities, and CO2 concentrations in mature leaves of IE and transgenic, isoprene-nonemitting (NE) gray poplar (Populus × canescens). Isoprene emission was drastically reduced in the transgenic trees through knockdown of PcISPS gene expression by RNA interference, resulting in plants with only 1% to 5% of isoprene emission potential compared with wild-type plants (Behnke et al., 2007).We measured the appearance of 13C in the isoprenoid precursors 2-C-methyl-d-erythritol-2,4-cyclodiphosphate (MEcDP) and DMADP as well as isoprene and the major downstream products of the MEP pathway, i.e. carotenoids and Chls. To reliably detect de novo synthesis of the pigments, which occur at very low rates (Beisel et al., 2010), we used isotope ratio mass spectrometry (IRMS).Here, (1) we quantify the effect of isoprene biosynthesis on the MEP pathway in poplar, and (2) we show that suppression of isoprene biosynthesis negatively affects the carbon flux through the MEP pathway by accumulating plastidic DMADP, which feeds back to inhibit PcDXS, leading to (3) a slight increase of carbon flux toward production of greater chain-length isoprenoids and (4) a strong decrease in the overall isoprenoid carbon fluxes to compensate for the much lower MEP pathway demand for carbon. This study strongly supports the hypothesis that an important regulatory mechanism of the MEP pathway is the feedback regulation of plastidic DMADP on DXS. The large carbon flux through the MEP pathway of IE poplar plastids demonstrates the potential of transgenically altered IE plant species to produce economically valuable isoprenoids at high rates in, for instance, industrial applications.  相似文献   
969.
Polypeptides containing between 4 and 32 repeats of a resilin‐inspired sequence AQTPSSYGAP, derived from the mosquito Anopheles gambiae, have been used as tags on recombinant fusion proteins. These repeating polypeptides were inspired by the repeating structures that are found in resilins and sequence‐related proteins from various insects. Unexpectedly, an aqueous solution of a recombinant resilin protein displays an upper critical solution temperature (cold‐coacervation) when held on ice, leading to a separation into a protein rich phase, typically exceeding 200 mg/mL, and a protein‐poor phase. We show that purification of recombinant proteins by cold‐coacervation can be performed when engineered as a fusion partner to a resilin‐inspired repeat sequence. In this study, we demonstrate the process by the recombinant expression and purification of enhanced Green fluorescent protein (EGFP) in E. coli. This facile purification system can produce high purity, concentrated protein solutions without the need for affinity chromatography or other time‐consuming or expensive purification steps, and that it can be used with other bulk purification steps such as low concentration ammonium sulfate precipitation. Protein purification by cold‐coacervation also minimizes the exposure of the target protein to enhanced proteolysis at higher temperature. Biotechnol. Bioeng. 2012; 109: 2947–2954. © 2012 Wiley Periodicals, Inc.  相似文献   
970.
BK polyomavirus (BKV or BKPyV) associated nephropathy affects up to 10% of kidney transplant recipients (KTRs). BKV isolates are categorized into four genotypes. It is currently unclear whether the four genotypes are also serotypes. To address this issue, we developed high-throughput serological assays based on antibody-mediated neutralization of BKV genotype I and IV reporter vectors (pseudoviruses). Neutralization-based testing of sera from mice immunized with BKV-I or BKV-IV virus-like particles (VLPs) or sera from naturally infected human subjects revealed that BKV-I specific serum antibodies are poorly neutralizing against BKV-IV and vice versa. The fact that BKV-I and BKV-IV are distinct serotypes was less evident in traditional VLP-based ELISAs. BKV-I and BKV-IV neutralization assays were used to examine BKV type-specific neutralizing antibody responses in KTRs at various time points after transplantation. At study entry, sera from 5% and 49% of KTRs showed no detectable neutralizing activity for BKV-I or BKV-IV neutralization, respectively. By one year after transplantation, all KTRs were neutralization seropositive for BKV-I, and 43% of the initially BKV-IV seronegative subjects showed evidence of acute seroconversion for BKV-IV neutralization. The results suggest a model in which BKV-IV-specific seroconversion reflects a de novo BKV-IV infection in KTRs who initially lack protective antibody responses capable of neutralizing genotype IV BKVs. If this model is correct, it suggests that pre-vaccinating prospective KTRs with a multivalent VLP-based vaccine against all BKV serotypes, or administration of BKV-neutralizing antibodies, might offer protection against graft loss or dysfunction due to BKV associated nephropathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号