首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   11篇
  2020年   1篇
  2017年   2篇
  2015年   4篇
  2014年   3篇
  2013年   6篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   10篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   5篇
  1974年   4篇
  1973年   3篇
  1972年   2篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1967年   4篇
  1966年   2篇
  1939年   1篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
111.
Anaerobic, bacterial reduction of water-soluble U(VI) complexes to the poorly soluble U(IV) mineral uraninite has been intensively studied as a strategy for in situ remediation of uranium-contaminated groundwater. A novel and potentially counteracting metabolic process, anaerobic, nitrate-dependent U(IV) oxidation, has recently been described in two bacterial species (Geobacter metallireducens and Thiobacillus denitrificans), but the underlying biochemistry and genetics are completely unknown. We report here that two diheme, c-type cytochromes (putatively c 4 and c 5 cytochromes) play a major role in nitrate-dependent U(IV) oxidation by T. denitrificans. Insertion mutations in each of the two genes encoding these cytochromes resulted in a greater than 50% decrease in U(IV) oxidation activity, and complementation in trans restored activity to wild-type levels. Sucrose-density-gradient ultracentrifugation confirmed that both cytochromes are membrane-associated. Insertion mutations in genes encoding other membrane-associated, c-type cytochromes did not diminish U(IV) oxidation. This is the first report of proteins involved in anaerobic U(IV) oxidation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
112.

Background  

Cancer and Alzheimer's disease (AD) are two seemingly distinct diseases and rarely occur simultaneously in patients. To explore molecular determinants differentiating pathogenic routes towards AD or cancer, we investigate the role of amyloid β protein (Aβ) on multiple tumor cell lines that are stably expressing luciferase (human glioblastoma U87; human breast adenocarcinoma MDA-MB231; and mouse melanoma B16F).  相似文献   
113.
114.
The factors that may contribute to the rate enhancement observed with enzymatic versus non-enzymatic hydrolysis of glycosides are discussed. The nature of the active site as deduced from labelling studies with beta-glucosidases is described. A two-step mechanism involving either an enzyme stabilized glycosyl ion or a covalent glycosyl-enzyme intermediate is proposed. Experiments with a beta-glucosidase from almonds show that even with 2-deoxy glucosides with good leaving groups as aglycon which are hydrolyzed 1000 times more slowly than the corresponding glucosides, the deglucosylation step is faster than the cleavage of the glycosidic bond.  相似文献   
115.
116.
117.
Particulate membrane fractions from pig brain catalyse the synthesis of lipid-linked sugar derivatives of the dolichyl phosphate pathway. Flavomycin, a phosphoglycolipid antibiotic produced by various species of streptomycetes, interferes with the formation of these glycolipids to a different extent. The formation of dolichyl phosphate glucose was shown to be most susceptible to the antibiotic, being blocked by about 50% in the presence of 0.2mm-flavomycin, whereas the synthesis of dolichyl diphosphate N-acetylglucosamine, dolichyl diphosphate chitobiose and dolichyl diphosphate chitobiosyl mannose required higher concentrations to achieve a comparable inhibition. Although the formation of dolichyl phosphate mannose was hardly affected, the accumulation of oligosaccharides with five to seven sugar units was observed, when dolichyl diphosphate oligosaccharides were synthesized with GDP-[(14)C]mannose in the presence of 1mm-flavomycin. This indicates that the inhibition of the synthesis of larger-sized oligosaccharides, known to be mediated by lipid-bound mannose, was not caused by an actual deficiency in dolichyl phosphate mannose. At flavomycin concentrations that inhibited the formation of dolichyl phosphate glucose by 50%, the transfer of lipid-linked saccharides to either the hexapeptide Tyr-Asn-Gly-Thr-Ser-Val or endogenous protein acceptors was hardly influenced. The mode of action of flavomycin is still obscure, but seems not to be of a competitive nature, since the inhibition was unaffected by increasing concentrations of dolichyl phosphate. Some evidence indicates that, besides a direct interaction of the antibiotic with some transferases, a non-specific incorporation into the membrane and alteration of its properties might be responsible for those inhibitory effects on all enzymes which were observed at high concentrations of flavomycin.  相似文献   
118.
Particulate membrane fractions from calf liver catalyze the release of glucose from GlcNAc2-Man9-Glc1–3-oligosaccharides. Maximal oligosaccharide-glucosidase activity was obtained at pH 6.2 and a detergent concentration of 0.5% Triton X-100. This activity could be distinguished from non-specific -glucosidase activity on the basis of different pH-dependence and lack of activation by detergent. The relative rates for the hydrolysis of the Glc3-, Glc2- , and Glcl-oligosaccharide , estimated from the initial velocity, was 1123. There is no significant difference in the enzyme activity towards free, peptide-bound, or lipid-linked oligosaccharide.Nojirimycin and l-deoxynojirimycin were strong inhibitors of microsomal oligosaccharide-glucosidases. Hydrolysis of GIc3-oligosaccharide was inhibited by 50% at concentrations of 0.16 mM and 2 M, respectively. Hydrolysis of the Glc2- and Glc1-oligosaccharide was inhibited to a somewhat lower extent, suggesting the presence of at least two glucosidases, one acting on Glc3- and one acting on Glc1- and Glc2-oligosaccharide.  相似文献   
119.
Tobamoviruses, mostly isolated from solanaceous plants, may represent ancient virus lineages that have codiverged with their hosts. Recently completed nucleotide sequences of six nonsolanaceous tobamoviruses allowed assessment of the codivergence hypothesis and support a third subgroup within tobamoviruses. The genomic sequences of 12 tobamoviruses and the partial sequences of 11 others have been analyzed. Comparisons of the predicted protein sequences revealed three clusters of tobamoviruses, corresponding to those infecting solanaceous species (subgroup 1), those infecting cucurbits and legumes (subgroup 2), and those infecting crucifers. The orchid-infecting odontoglossum ringspot tobamovirus was associated with subgroup 1 genomes by its coat and movement protein sequences, but with the crucifer-pathogenic tobamoviruses by the remainder of its genome, suggesting that it is the progeny of a recombinant. For four of five genomic regions, subgroup 1 and 3 genomes were equidistant from a subgroup 2 genome chosen for comparison, suggesting uniform rates of evolution. A phylogenetic tree of plant families based on the tobamoviruses they harbor was congruent with that based on rubisco sequences but had a different root, suggesting that codivergence was tempered by rare events of viruses of one family colonizing another family. The proposed subgroup 3 viruses probably have an origin of virion assembly in the movement protein gene, a large (25-codon) overlap of movement and coat protein open reading frames, and a comparably shorter genome. Codon-position- dependent base compositions and codon prevalences suggested that the coat protein frame of the overlap region was ancestral. Bootstrapped parsimony analysis of the nucleotides in the overlap region and of the sequences translated from the -1 frame (the subgroup 3 movement protein frame) of this region produced trees inconsistent with those deduced from other regions. The results are consistent with a model in which a no or short overlap organization was ancestral. Despite encoding of subgroup 2 and 3 movement protein C-termini by nonhomologous nucleotides, weak similarities between their amino acid sequences suggested convergent sequence evolution.   相似文献   
120.
Fluorescence-labeled soluble major histocompatibility complex class I-peptide "tetramers" constitute a powerful tool to detect and isolate antigen-specific CD8(+) T cells by flow cytometry. Conventional "tetramers" are prepared by refolding of heavy and light chains with a specific peptide, enzymatic biotinylation at an added C-terminal biotinylation sequence, and "tetramerization" by reaction with phycoerythrin- or allophycocyanin-labeled avidin derivatives. We show here that such preparations are heterogeneous and describe a new procedure that allows the preparation of homogeneous tetra- or octameric major histocompatibility complex-peptide complexes. These compounds were tested on T1 cytotoxic T lymphocytes (CTLs), which recognize the Plasmodium berghei circumsporzoite peptide 252-260 (SYIPSAEKI) containing photoreactive 4-azidobenzoic acid on Lys(259) in the context of H-2K(d). We report that mutation of the CD8 binding site of K(d) greatly impairs the binding of tetrameric but not octameric or multimeric K(d)-PbCS(ABA) complexes to CTLs. This mutation abolishes the ability of the octamer to elicit significant phosphorylation of CD3, intracellular calcium mobilization, and CTL degranulation. Remarkably, however, this octamer efficiently activates CTLs for Fas (CD95)-dependent apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号