首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   341篇
  免费   16篇
  国内免费   2篇
  359篇
  2020年   2篇
  2019年   2篇
  2015年   7篇
  2014年   6篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   6篇
  2009年   8篇
  2008年   13篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   19篇
  2003年   10篇
  2002年   11篇
  2001年   12篇
  2000年   15篇
  1999年   13篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   5篇
  1992年   10篇
  1991年   10篇
  1990年   11篇
  1989年   12篇
  1988年   10篇
  1987年   12篇
  1986年   9篇
  1985年   9篇
  1984年   10篇
  1983年   7篇
  1982年   10篇
  1981年   11篇
  1980年   8篇
  1979年   12篇
  1978年   7篇
  1977年   9篇
  1976年   5篇
  1975年   6篇
  1974年   6篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
  1969年   2篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1956年   2篇
排序方式: 共有359条查询结果,搜索用时 15 毫秒
71.
Regulation of phosphate uptake was studied in HeLa cell lines after transfection with DNA encoding the human 5-HT1A receptor. Phosphate uptake was saturable and greater than 90% sodium-dependent, with Vmax approximately 30-35% without changing Km. Treatment with 5-HT or the 5-HT1A-specific agonist 8-OH-2-(di-n-propylamino)1,2,3,4-tetrahydronaphthalene increased Vmax approximately 40% without affecting Km. This effect was blocked by pretreatment with the 5-HT1 antagonists, methiothepine and spiperone, or pertussis toxin. Surprisingly, the stimulation was not secondary to an inhibition of adenylyl cyclase because 5-HT stimulated phosphate uptake approximately 20% in the presence of 1 mM 8-Br-cAMP. Rather, the primary pathway linked to the stimulation of phosphate uptake involved activation of protein kinase C because (i) 5-HT measurably activated protein kinase C in these cells, (ii) activators of protein kinase C (phorbol esters and diacylglycerol analogues) stimulated phosphate uptake in these cells (iii) the half-maximal doses for 5-HT-induced phosphatidylinositol hydrolysis and stimulation of phosphate uptake were virtually equivalent, and both effects were equally sensitive to pertussis toxin, and (iv) the stimulation was markedly attenuated in cells made deficient in protein kinase C. These results demonstrate that the stimulation of phosphatidylinositol hydrolysis by the 5-HT1A receptor can generate physiologically measurable effects on cellular transport and suggest that such accessory pathways may play a prominent role in signal transduction.  相似文献   
72.
Functional knockdowns mediated by endoplasmatic reticulum-retained antibodies (ER intrabodies) are a promising tool for research because they allow functional interference on the protein level. We demonstrate for the first time that ER intrabodies can induce a knock-down phenotype in mice. Surface VCAM1 was suppressed in bone marrow of heterozygous and homozygous ER intrabody mice (iER-VCAM1 mice). iER-VCAM1 mice did not have a lethal phenotype, in contrast to the constitutive knockout of VCAM1, but adult mice exhibited physiological effects in the form of aberrant distribution of immature B-cells in blood and bone marrow. The capability to regulate knock-down strength may spark a new approach for the functional study of membrane and plasma proteins, which may especially be valuable for generating mouse models that more closely resemble disease states than classic knockouts do.  相似文献   
73.
"Transactivation" of epidermal growth factor receptors (EGFRs) in response to activation of many G protein-coupled receptors (GPCRs) involves autocrine/paracrine shedding of heparin-binding EGF (HB-EGF). HB-EGF shedding involves proteolytic cleavage of a membrane-anchored precursor by incompletely characterized matrix metalloproteases. In COS-7 cells, alpha(2A)-adrenergic receptors (ARs) stimulate ERK phosphorylation via two distinct pathways, a transactivation pathway that involves the release of HB-EGF and the EGFR and an alternate pathway that is independent of both HB-EGF and the EGFR. We have developed a mixed culture system to study the mechanism of GPCR-mediated HB-EGF shedding in COS-7 cells. In this system, alpha(2A)AR expressing "donor" cells are co-cultured with "acceptor" cells lacking the alpha(2A)AR. Each population expresses a uniquely epitope-tagged ERK2 protein, allowing the selective measurement of ERK activation in the donor and acceptor cells. Stimulation with the alpha(2)AR selective agonist UK14304 rapidly increases ERK2 phosphorylation in both the donor and the acceptor cells. The acceptor cell response is sensitive to inhibitors of both the EGFR and HB-EGF, indicating that it results from the release of HB-EGF from the alpha(2A)AR-expressing donor cells. Experiments with various chemical inhibitors and dominant inhibitory mutants demonstrate that EGFR-dependent activation of the ERK cascade after alpha(2A)AR stimulation requires Gbetagamma subunits upstream and dynamin-dependent endocytosis downstream of HB-EGF shedding and EGFR activation, whereas Src kinase activity is required both for the release of HB-EGF and for HB-EGF-mediated ERK2 phosphorylation.  相似文献   
74.
The incorporation of radioactive phosphate into phosphatidylinositol was stimulated by epinephrine in hamster fat cells. This action was inhibited by alpha-adrenergic antagonists in the potency order: Prazosin?phentolamine>yohimbine. Methoxamine, but not clonidine, was able to mimic the effect of epinephrine. These data indicate that the phosphatidylinositol effect in fat cells is due to activation of alpha1 adrenoceptors. On the other hand, the accumulation of cyclic AMP due to epinephrine was potentiated by alpha-adrenergic antagonists in the potency order phentolamine>yohimbine ?prazosin, in hamster fat cells. Clonidine significantly decreased the accumulation of cyclic AMP due to isoproterenol or ACTH in hamster fat cells, suggesting that the alpha-adrenergic modulation of cyclic AMP levels in hamster fat cells is mediated by alpha2 adrenoceptors. Radioligand binding studies with plasma membranes from hamster adipocytes demonstrated the presence of both alpha1 and alpha2 adrenoceptors but about 90% of the binding sites were alpha2. These data support the hypothesis that alpha2 effects of catecholamines are due to inhibition of adenylate cyclase while the increases in phosphatidylinositol turnover that seem to be involved in the mobilization of calcium are linked exclusively to alpha1 adrenoceptor activation.  相似文献   
75.
Tumor promoting phorbol esters stimulate Ca++ phospholipid-dependent protein kinase C. It has been suggested that this enzyme regulates the functional properties of different cell membrane receptors. In this study we investigated the effect of phorbol esters on alpha 1-adrenoceptor binding and phosphatidylinositol metabolism in cultured smooth muscle cells derived from rabbit aorta. Treatment of these cells with biologically active phorbol esters for 15 min. to 2 hours caused a marked decrease of norepinephrine stimulation of inositol phospholipid metabolism and a 3 fold decrease in agonist affinity for 125I-HEAT binding to alpha 1-adrenoceptors in the intact smooth muscle cells. The ability of phorbol esters to modulate alpha 1-adrenoceptor responsiveness suggests that activation of protein kinase C may represent an important mechanism regulating alpha 1-adrenergic receptor functional properties.  相似文献   
76.
We have constructed a variety of chimeric beta 2/alpha 1 adrenergic receptors (AR) in which selected portions of the third intracellular loop of the alpha (1B)AR were substituted into the corresponding regions of the beta 2AR. The mutant receptors were both transiently and permanently expressed in COS-7 or L-cells, respectively, and tested for their ability to mediate epinephrine-induced activation of polyphosphoinositide (PI) hydrolysis and adenylylcyclase. We have determined that 27 amino acids of the alpha (1B)AR (residues 233-259) derived from the N-terminal portion of the third intracellular loop represent the structural determinant conferring to the beta 2AR the ability to activate PI hydrolysis. This finding suggests that in the alpha (1B)AR the N-terminal portion of the third intracellular loop plays a major role in determining the selectivity of receptor-G protein coupling. However, replacement of alpha 1B sequences in the third intracellular loop of the beta 2AR did not abolish the latter receptor's coupling to activation of adenylylcyclase, thus resulting in chimeric adrenergic receptors which activated both PI hydrolysis and adenylylcyclase. These results indicate that, even if the N-terminal portion of the third intracellular loop is a major determinant of the selectivity of receptor-G protein coupling, other structural domains of the receptors also modulate this property. The comparison of the amino acid sequences which determine the selectivity of G protein coupling in functionally similar receptors may help to elucidate the structural basis for activation of specific G protein-effector systems.  相似文献   
77.
The beta-adrenergic receptor kinase (beta-ARK) phosphorylates G protein coupled receptors in an agonist-dependent manner. Since the exact sites of receptor phosphorylation by beta-ARK are poorly defined, the identification of substrate amino acids that are critical to phosphorylation by the kinase are also unknown. In this study, a peptide whose sequence is present in a portion of the third intracellular loop region of the human platelet alpha 2-adrenergic receptor is shown to serve as a substrate for beta-ARK. Removal of the negatively charged amino acids surrounding a cluster of serines in this alpha 2-peptide resulted in a complete loss of phosphorylation by the kinase. A family of peptides was synthesized to further study the role of acidic amino acids in peptide substrates of beta-ARK. By kinetic analyses of the phosphorylation reactions, beta-ARK exhibited a marked preference for negatively charged amino acids localized to the NH2-terminal side of a serine or threonine residue. While there were no significant differences between glutamic and aspartic acid residues, serine-containing peptides were 4-fold better substrates than threonine. Comparing a variety of kinases, only rhodopsin kinase and casein kinase II exhibited significant phosphorylation of the acidic peptides. Unlike beta-ARK, RK preferred acid residues localized to the carboxyl-terminal side of the serine. A feature common to beta-ARK and RK was a much greater Km for peptide substrates as compared to that for intact receptor substrates.  相似文献   
78.
Cultured chick embryo cardiac myoblasts specifically bind [3H]nonrepinephrine. The binding is rapid and reversible. Bound [3H]nonrepinephrine, dissociated by 1 M HCl, can be rebound to fresh cells. β-Adrenergic catecholamines were most potent in displacing [3H]nonrepinephrine from the cellular bindign sites. The binding reaction did not show stereospecificity. α-Adrenergic amines were much less potent. Propranolol, but no phentolamine, competed for the sites. Approximately 2.5 · 106 specific binding sites are present per myocardial cell. The sites appear to be present predominantly at the cell surface in that nonrepinephrine linked to agarose beads competes for th sites. Similarly, the sites were degraded by either trypsin or trypsin bound to agarose. Two different binding constants, K = 2 · 106 and 1 · 105, were observed. Proteolytic enzymes decreased binding whereas certain hospholipases led to an increase in specific binding. Divalent cations at concentrations > 1 mM diminished binding as did chelating agents.  相似文献   
79.
Densensitization of turkey erythrocytes by exposure to the beta-adrenergic agonist (-)isoproterenol leads to decreased activation of adenylate cyclase by agonist, NaF, and guanyl-5'-yl imido diphosphate, with no reduction in the number of beta-adrenergic receptors. Interactions between the receptor and the guanine nucleotide regulatory protein (N protein) also seem to be impaired. These observations suggest that a component distal to the beta-adrenergic receptor may be a locus of modification. Accordingly we examined the N protein to determine whether it was altered by desensitization. The rate at which (-)isoproterenol stimulated the release of [3H]GDP from the N protein was substantially lower in membranes prepared from desensitized cells, providing further evidence for uncoupling of the receptor and the N protein. The amount of N protein in membranes from control and desensitized cells was compared by labeling the 42,000 Mr component of the N protein with [32P]NAD+ and cholera toxin; no significant difference was found. However, significantly more N protein (p less than .001) was solubilized by cholate extraction of desensitized membranes, suggesting an altered association of the N protein with the membrane after desensitization. The functional activity of the N protein was measured by reconstitution of cholate extracts of turkey erythrocyte membranes into S49 lymphoma cyc- membranes. Reconstitution of (-)isoproterenol stimulation of adenylate cyclase activity was reduced significantly (p less than .05) after desensitization. These observations suggest that desensitization of the turkey erythrocyte by (-)isoproterenol results in functional modifications of the guanine nucleotide regulatory protein, leading to impaired interactions with the beta-adrenergic receptor and reduced activation of adenylate cyclase.  相似文献   
80.
The effect of moderate elevation in extracellular potassium concentration (up to 12 mM) on contraction of cat ventricular muscle was examined. Isometric force development was recorded from eight excised trabeculae and from six coronary-perfused in situ papillary muscle preparations. Contraction in the steady state was variably affected, sometimes decreasing monotonically, sometimes remaining unchanged, with increasing potassium level. In 11 of these 14 preparations, the steady state was preceded by a transient period in which the contraction was augmented. In addition, eight excised trabeculae were used in an experimental arrangement designed to distinguish between inotropic effects caused by potassium-induced alterations in the action potential and other, more direct, effects of this ion on contraction. The negative inotropic effect is attributable to a potassium-induced reduction in the amplitude and/or duration of the action potential plateau. The positive inotropic effect was found in experimental arrangements where effects of the potassium-rich medium on action potential time-course were effectively "buffered." The positive inotropic effect thus depends on the presence of the elevated potassium concentration and can occur independently of effects on the action potential time-course.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号