首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   13篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   7篇
  2015年   13篇
  2014年   8篇
  2013年   9篇
  2012年   22篇
  2011年   15篇
  2010年   10篇
  2009年   4篇
  2008年   14篇
  2007年   13篇
  2006年   15篇
  2005年   13篇
  2004年   16篇
  2003年   11篇
  2002年   10篇
  2001年   8篇
  2000年   7篇
  1999年   8篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1993年   3篇
  1992年   4篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   6篇
  1984年   2篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1975年   4篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
  1869年   1篇
排序方式: 共有293条查询结果,搜索用时 646 毫秒
21.

Background

Novel pentacycloundecane (PCU)-lactone-CO-EAIS peptide inhibitors were designed, synthesized, and evaluated against wild-type C-South African (C-SA) HIV-1 protease. Three compounds are reported herein, two of which displayed IC50 values of less than 1.00 μM. A comparative MM-PB(GB)SA binding free energy of solvation values of PCU-lactam and lactone models and their enantiomers as well as the PCU-lactam-NH-EAIS and lactone-CO-EAIS peptide inhibitors and their corresponding diastereomers complexed with South African HIV protease (C-SA) was performed. This will enable us to rationalize the considerable difference between inhibitory concentration (IC50) of PCU-lactam-NH-EAIS and PCU-lactone-CO-EAIS peptides.

Results

The PCU-lactam model exhibited more negative calculated binding free energies of solvation than the PCU-lactone model. The same trend was observed for the PCU-peptide inhibitors, which correspond to the experimental activities for the PCU-lactam-NH-EAIS peptide (IC50 = 0.076 μM) and the PCU-lactone-CO-EAIS peptide inhibitors (IC50 = 0.850 μM). Furthermore, a density functional theory (DFT) study on the natural atomic charges of the nitrogen and oxygen atoms of the three PCU-lactam, PCU-lactim and PCU-lactone models were performed using natural bond orbital (NBO) analysis. Electrostatic potential maps were also used to visualize the electron density around electron-rich regions. The asymmetry parameter (η) and quadrupole coupling constant (χ) values of the nitrogen and oxygen nuclei of the model compounds were calculated at the same level of theory. Electronic molecular properties including polarizability and electric dipole moments were also calculated and compared. The Gibbs theoretical free solvation energies of solvation (∆Gsolv) were also considered.

Conclusions

A general trend is observed that the lactam species appears to have a larger negative charge distribution around the heteroatoms, larger quadrupole constant, dipole moment and better solvation energy, in comparison to the PCU-lactone model. It can be argued that these characteristics will ensure better eletronic interaction between the lactam and the receptor, corresponding to the observed HIV protease activities in terms of experimental IC50 data.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0115-5) contains supplementary material, which is available to authorized users.  相似文献   
22.
Biallelic mutations in the gene encoding centrosomal CDK5RAP2 lead to autosomal recessive primary microcephaly (MCPH), a disorder characterized by pronounced reduction in volume of otherwise architectonical normal brains and intellectual deficit. The current model for the microcephaly phenotype in MCPH invokes a premature shift from symmetric to asymmetric neural progenitor-cell divisions with a subsequent depletion of the progenitor pool. The isolated neural phenotype, despite the ubiquitous expression of CDK5RAP2, and reports of progressive microcephaly in individual MCPH cases prompted us to investigate neural and non-neural differentiation of Cdk5rap2-depleted and control murine embryonic stem cells (mESC). We demonstrate an accumulating proliferation defect of neurally differentiating Cdk5rap2-depleted mESC and cell death of proliferative and early postmitotic cells. A similar effect does not occur in non-neural differentiation into beating cardiomyocytes, which is in line with the lack of non-central nervous system features in MCPH patients. Our data suggest that MCPH is not only caused by premature differentiation of progenitors, but also by reduced propagation and survival of neural progenitors.  相似文献   
23.

Introduction  

Mast cells have been implicated to play a functional role in arthritis, especially in autoantibody-positive disease. Among the cytokines involved in rheumatoid arthritis (RA), IL-17 is an important inflammatory mediator. Recent data suggest that the synovial mast cell is a main producer of IL-17, although T cells have also been implicated as prominent IL-17 producers as well. We aimed to identify IL-17 expression by mast cells and T cells in synovium of arthritis patients.  相似文献   
24.
During mammalian meiosis, double-strand breaks are deliberately made throughout the genome and then repaired, leading to the exchange of genetic material between copies of chromosomes. How the locations of breaks are specified was largely unknown until a fortuitous confluence of statistical genetics and molecular biology uncovered the role of PRDM9, a DNA binding protein. Many properties of this protein remain mysterious, however, including how it binds to DNA, how it contributes to male infertility-both in humans, and in hybrid mice-and why, in spite of its fundamental function in meiosis, its binding domain varies extensively among humans and across mammals. We present a brief summary of what has recently been learned about PRDM9 in different fields, focusing on the puzzles yet to be resolved.  相似文献   
25.
This review focuses on two gaseous cellular messenger molecules, CO and H2S, that are involved in cerebrovascular flow regulation. CO is a dilatory mediator in active hyperemia, autoregulation, hypoxic dilation, and counteracting vasoconstriction. It is produced from heme by a constitutively expressed enzyme [heme oxygenase (HO)-2] expressed highly in the brain and by an inducible enzyme (HO-1). CO production is regulated by controlling substrate availability, HO-2 catalytic activity, and HO-1 expression. CO dilates arterioles by binding to heme that is bound to large-conductance Ca2+-activated K+ channels. This binding elevates channel Ca2+ sensitivity, that increases coupling of Ca2+ sparks to large-conductance Ca2+-activated K+ channel openings and, thereby, hyperpolarizes the vascular smooth muscle. In addition to dilating blood vessels, CO can either inhibit or accentuate vascular cell proliferation and apoptosis, depending on conditions. H2S may also function as a cerebrovascular dilator. It is produced in vascular smooth muscle cells by hydrolysis of l-cysteine catalyzed by cystathione gamma-lyase (CSE). H2S dilates arterioles at physiologically relevant concentrations via activation of ATP-sensitive K+ channels. In addition to dilating blood vessels, H2S promotes apoptosis of vascular smooth muscle cells and inhibits proliferation-associated vascular remodeling. Thus both CO and H2S modulate the function and the structure of circulatory system. Both the HO-CO and CSE-H2S systems have potential to interact with NO and prostanoids in the cerebral circulation. Much of the physiology and biochemistry of HO-CO and CSE-H2S in the cerebral circulation remains open for exploration.  相似文献   
26.
Tumor necrosis factor- (TNF-) causes oxidative stress and apoptosis in a variety of cell types. Heme oxygenase (HO) degrades heme to bilirubin, an antioxidant, and carbon monoxide (CO), a cell cycle modulator, and a vasodilator. Newborn pig cerebral microvascular endothelial cells (CMVEC) highly express constitutive HO-2. We investigated the role of HO-2 in protection against TNF--induced apoptosis in cerebral vascular endothelium. In CMVEC from mice and newborn pigs, 15 ng/ml TNF- alone, or with 10 µg/ml cycloheximide (CHX) caused apoptosis detected by nuclear translocation of p65 NF-B, caspase-3 activation, DNA fragmentation, cell-cell contact destabilization, and cell detachment. TNF- did not induce HO-1 expression in CMVEC. CMVEC from HO-2 knockout mice showed greater sensitivity to apoptosis caused by serum deprivation and TNF- than did wild-type mice. TNF- increased reactive oxygen species generation, including hydrogen peroxide and superoxide radicals, as detected by dihydrorhodamine-123 and dihydroethidium. The TNF- response was inhibited by superoxide dismutase and catalase suggesting apoptosis is oxidative stress related. Inhibition of endogenous HO-2 in newborn pig CMVEC increased oxidative stress and exaggerated apoptosis caused by serum deprivation and TNF-. In HO-1-overexpressing CMVEC (HO-1 selective induction by cobalt portophyrin), TNF- did not cause apoptosis. A CO-releasing compound, CORM-A1, and bilirubin blocked TNF--induced reactive oxygen species accumulation and apoptosis consistent with the antioxidant and antiapoptotic roles of the end products of HO activity. We conclude that HO-2 is critical for protection of cerebrovascular endothelium against apoptotic changes induced by oxidative stress and cytokine-mediated inflammation. carbon monoxide; bilirubin; vascular injury; reactive oxygen species; heme oxygenase; cycloheximide  相似文献   
27.
28.
Understanding why some species have more genetic diversity than others is central to the study of ecology and evolution, and carries potentially important implications for conservation biology. Yet not only does this question remain unresolved, it has largely fallen into disregard. With the rapid decrease in sequencing costs, we argue that it is time to revive it.What evolutionary forces maintain genetic diversity in natural populations? How do diversity levels relate to census population sizes (Box 1)? Do low levels of diversity limit adaptation to novel selective pressures? Efforts to address such questions spurred the rise of modern population genetics and contributed to the development of the neutral theory of molecular evolution—the null hypothesis for much of evolutionary genetics and comparative genomics [1][3]. Yet these questions remain wide open and, for close to two decades, have been neglected [4]. Most notably, little progress has been made to resolve a riddle first pointed out 40 years ago on the basis of allozyme data: the mysteriously narrow range of genetic diversity levels seen across taxa that vary markedly in their census population sizes [5]. This gap in our understanding is glaring, and may hamper efforts at conservation (e.g., [6]).

Box 1. Glossary

Allozymes: Allelic variants of a protein, often detected by differences in gel electrophoresis. Balancing selection: Natural selection that maintains variation longer than expected from genetic drift alone. Census population size: The actual number of individuals in a population; methods to estimate this number vary depending on the species and may involve aerial, transect, or capture/recapture counts. Diversity levels: The measure used here is the probability that a pair of randomly chosen haplotypes differ at a site. Effective population size: The size of an idealized population with some of the same properties as the actual one, e.g., the same rate of genetic drift. Under simplifying assumptions, notably a constant population size and no population structure, this parameter can be estimated from observed diversity levels, given an independent estimate of the mutation rate. Fluctuating selection: When the fitness of an allele changes over time or over space. Genetic draft: A dramatic loss of genetic variation due to strong, frequent selection at nearby sites [8]. Genetic drift: In a finite population, the loss of genetic variation due to the random sampling of gametes at each generation. Local adaptation: Adaptation to a particular environment that is not shared by the entire species. Nearly neutral theory of molecular evolution: A modification of the neutral theory, in which many mutations are slightly deleterious, rather than strictly neutral or strongly deleterious [75]. Neutral theory of molecular evolution: The theory that most genetic variation seen within populations and between species is neutral, and most mutations are either neutral or strongly deleterious [11]. Panmixia: Random mating among individuals, and hence no population structure. Phylogenetically independent contrasts: A statistical method that allows one to compare properties of species controlling for their evolutionary relationship. Purifying (negative) selection: Natural selection that favors the common, fitter allele against rare, deleterious alleles. Selection at linked sites: Selection at sites linked to the locus under consideration, which can affect the population dynamics of alleles at that locus. Silent sites: A general term for synonymous, intronic, and intergenic sites—all sites at which mutations do not change an amino acid. Variation-reducing selection: Selection that leads to a decrease in diversity at linked sites.With the recent technological revolution in sequencing, the data needed to address questions about the determinants of genetic diversity levels are now within reach. As a first step towards reviving these questions, we compile existing estimates of nuclear sequence diversity. These data are highly preliminary, but they underscore how little is known about the narrow span of diversity levels across species or why some species maintain more genetic variation than others [5],[7],[8], and they offer a glimpse of trends that may be worth pursuing.  相似文献   
29.
Regulation of alternative macrophage activation by galectin-3   总被引:3,自引:0,他引:3  
Alternative macrophage activation is implicated in diverse disease pathologies such as asthma, organ fibrosis, and granulomatous diseases, but the mechanisms underlying macrophage programming are not fully understood. Galectin-3 is a carbohydrate-binding lectin present on macrophages. We show that disruption of the galectin-3 gene in 129sv mice specifically restrains IL-4/IL-13-induced alternative macrophage activation in bone marrow-derived macrophages in vitro and in resident lung and recruited peritoneal macrophages in vivo without affecting IFN-gamma/LPS-induced classical activation or IL-10-induced deactivation. IL-4-mediated alternative macrophage activation is inhibited by siRNA-targeted deletion of galectin-3 or its membrane receptor CD98 and by inhibition of PI3K. Increased galectin-3 expression and secretion is a feature of alternative macrophage activation. IL-4 stimulates galectin-3 expression and release in parallel with other phenotypic markers of alternative macrophage activation. By contrast, classical macrophage activation with LPS inhibits galectin-3 expression and release. Galectin-3 binds to CD98, and exogenous galectin-3 or cross-linking CD98 with the mAb 4F2 stimulates PI3K activation and alternative activation. IL-4-induced alternative activation is blocked by bis-(3-deoxy-3-(3-methoxybenzamido)-beta-D-galactopyranosyl) sulfane, a specific inhibitor of extracellular galectin-3 carbohydrate binding. These results demonstrate that a galectin-3 feedback loop drives alternative macrophage activation. Pharmacological modulation of galectin-3 function represents a novel therapeutic strategy in pathologies associated with alternatively activated macrophages.  相似文献   
30.
Galectin-1 (Gal-1) and galectin-3 (Gal-3) exhibit profound but unique immunomodulatory activities in animals but their molecular mechanisms are incompletely understood. Early studies suggested that Gal-1 inhibits leukocyte function by inducing apoptotic cell death and removal, but recent studies show that some galectins induce exposure of the common death signal phosphatidylserine (PS) independently of apoptosis. In this study, we report that Gal-3, but not Gal-1, induces both PS exposure and apoptosis in primary activated human T cells, whereas both Gal-1 and Gal-3 induce PS exposure in neutrophils in the absence of cell death. Gal-1 and Gal-3 bind differently to the surfaces of T cells and only Gal-3 mobilizes intracellular Ca2+ in these cells, although Gal-1 and Gal-3 bind their respective T cell ligands with similar affinities. Although Gal-1 does not alter T cell viability, it induces IL-10 production and attenuates IFN-gamma production in activated T cells, suggesting a mechanism for Gal-1-mediated immunosuppression in vivo. These studies demonstrate that Gal-1 and Gal-3 induce differential responses in T cells and neutrophils, and identify the first factor, Gal-3, capable of inducing PS exposure with or without accompanying apoptosis in different leukocytes, thus providing a possible mechanism for galectin-mediated immunomodulation in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号