首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   948篇
  免费   100篇
  国内免费   1篇
  2022年   5篇
  2021年   7篇
  2020年   9篇
  2019年   9篇
  2018年   10篇
  2017年   11篇
  2016年   15篇
  2015年   32篇
  2014年   22篇
  2013年   42篇
  2012年   40篇
  2011年   43篇
  2010年   34篇
  2009年   40篇
  2008年   34篇
  2007年   48篇
  2006年   41篇
  2005年   33篇
  2004年   37篇
  2003年   30篇
  2002年   25篇
  2001年   35篇
  2000年   17篇
  1999年   33篇
  1998年   18篇
  1997年   20篇
  1996年   25篇
  1995年   16篇
  1994年   18篇
  1993年   18篇
  1992年   23篇
  1991年   22篇
  1990年   20篇
  1989年   26篇
  1988年   17篇
  1987年   10篇
  1986年   15篇
  1985年   12篇
  1984年   12篇
  1983年   6篇
  1982年   16篇
  1981年   9篇
  1980年   12篇
  1979年   6篇
  1978年   13篇
  1977年   8篇
  1974年   5篇
  1973年   6篇
  1971年   7篇
  1970年   5篇
排序方式: 共有1049条查询结果,搜索用时 15 毫秒
71.
72.
The mode of action of serotonin (5-HT) in the regulation of frog adrenal steroidogenesis was studied in vitro using the perifusion system technique. Graded doses of 5-HT (from 10(-8) to 10(-6) M) increased both corticosterone and aldosterone production in a dose-dependent manner. Short pulses (20 min) of 10(-6) M 5-HT, administered at 130 min intervals within the same experiment, did not cause any desensitization phenomenon. Indomethacin (IDM; 5 microM), a cyclooxygenase inhibitor which induced a dramatic decrease in the spontaneous secretion of corticosteroids, did not impair the stimulatory effect of 5-HT on corticosterone and aldosterone production. In the absence of calcium, 5-HT (10(-6) M) was still able to stimulate corticosteroid production. Dantrolene (5 x 10(-5) M), a blocker of calcium mobilization from intracellular pools which significantly inhibited the spontaneous production of corticosteroids, did not suppress 5-HT-evoked corticosteroid secretion. These results show that 5-HT, stored in adrenal chromaffin cells, may act as a paracrine factor to stimulate adrenal steroidogenesis in the frog. Our data also indicate that the mechanism of action of 5-HT does not depend on prostaglandin biosynthesis.  相似文献   
73.
74.
75.
76.
Flowering time, the major regulatory transition of plant sequential development, is modulated by multiple endogenous and environmental factors. By phenotypic profiling of 80 early flowering mutants of Arabidopsis, we examine how mutational reduction of floral repression is associated with changes in phenotypic plasticity and stability. Flowering time measurements in mutants reveal deviations from the linear relationship between the number of leaves and number of days to bolting described for natural accessions and late flowering mutants. The deviations correspond to relative early bolting and relative late bolting phenotypes. Only a minority of mutants presents no detectable phenotypic variation. Mutants are characterized by a broad release of morphological pleiotropy under short days, with leaf characters being most variable. They also exhibit changes in phenotypic plasticity across environments for florigenic-related responses, including the reaction to light and dark, photoperiodic behavior, and Suc sensitivity. Morphological pleiotropy and plasticity modifications are differentially distributed among mutants, resulting in a large diversity of multiple phenotypic changes. The pleiotropic effects observed may indicate that floral repression defects are linked to global developmental perturbations. This first, to our knowledge, extensive characterization of phenotypic variation in early flowering mutants correlates with the reports that most factors recruited in floral repression at the molecular genetic level correspond to ubiquitous regulators. We discuss the importance of functional ubiquity for floral repression with respect to robustness and flexibility of network biological systems.  相似文献   
77.
Rough Deal (Rod) and Zw10 are components of a complex required for the metazoan metaphase checkpoint and for recruitment of dynein/dynactin to the kinetochore. The Rod complex, like most classical metaphase checkpoint components, forms part of the outer domain of unattached kinetochores. Here we analyze the dynamics of a GFP-Rod chimera in living syncytial Drosophila embryos. Uniquely among checkpoint proteins, GFP-Rod robustly streams from kinetochores along microtubules, from the time of chromosome attachment until anaphase onset. Prometaphase and metaphase kinetochores continuously recruit new Rod, thus feeding the current. Rod flux from kinetochores appears to require biorientation but not tension because it continues in the presence of taxol. As with Mad2, kinetochore- and spindle-associated Rod rapidly turns over with free cytosolic Rod, both during normal mitosis and after colchicine treatment, with a t1/2 of 25-45 s. GFP-Rod coimmunoprecipitates with dynein/dynactin, and in the absence of microtubules both Rod and dynactin accumulate on kinetochores. Nevertheless, Rod and dynein/dynactin behavior are distinguishable. We propose that the Rod complex is a major component of the fibrous corona and that the recruitment of Rod during metaphase is required to replenish kinetochore dynein after checkpoint conditions have been satisfied but before anaphase onset.  相似文献   
78.
Recovering native protein from aggregates is a common obstacle in the production of recombinant proteins. Recent reports have shown that hydrostatic pressure is an attractive alternative to traditional denature-and-dilute techniques, both in terms of yield and process simplicity. To determine the effect of process variables, we subjected tailspike aggregates to a variety of pressure-treatment conditions. Maximum native tailspike yields were obtained with only short pressure incubations (<5 min) at 240 MPa. However, some tailspike aggregates were resistant to pressure, despite multiple cycles of pressure. Extending the postpressure incubation time to 4 days improved the yield of native protein from aggregates from 19.4 +/- 0.9 to 47.4 +/- 19.6 microg/mL (approximately 78% yield of native trimer from nonaggregate material). The nearly exclusive conversion of monomer to trimer over the time scale of days, when combined with previous kinetic data, allows for the identification of three postpressure kinetic phases: a rapid phase consisting of structured dimer conversion to trimer (30 min), an intermediate phase consisting of monomer conversion to aggregate (100 min), and a slow phase consisting of conversion of monomer to trimer (days). Optimizing the production of structured dimer can yield the highest level of folded protein. Typical refolding additives, such as glycerol, or low-temperature incubation did not improve yields.  相似文献   
79.
Lefebvre B  Batoko H  Duby G  Boutry M 《The Plant cell》2004,16(7):1772-1789
The structural determinants involved in the targeting of multitransmembrane-span proteins to the plasma membrane (PM) remain poorly understood. The plasma membrane H+ -ATPase (PMA) from Nicotiana plumbaginifolia, a well-characterized 10 transmembrane-span enzyme, was used as a model to identify structural elements essential for targeting to the PM. When PMA2 and PMA4, representatives of the two main PMA subfamilies, were fused to green fluorescent protein (GFP), the chimeras were shown to be still functional and to be correctly and rapidly targeted to the PM in transgenic tobacco. By contrast, chimeric proteins containing various combinations of PMA transmembrane spanning domains accumulated in the Golgi apparatus and not in the PM and displayed slow traffic properties through the secretory pathway. Individual deletion of three of the four cytosolic domains did not prevent PM targeting, but deletion of the large loop or of its nucleotide binding domain resulted in GFP fluorescence accumulating exclusively in the endoplasmic reticulum. The results show that, at least for this polytopic protein, the PM is not the default pathway and that, in contrast with single-pass membrane proteins, cytosolic structural determinants are required for correct targeting.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号