首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   28篇
  2022年   2篇
  2021年   12篇
  2020年   4篇
  2019年   6篇
  2018年   7篇
  2017年   8篇
  2016年   12篇
  2015年   14篇
  2014年   20篇
  2013年   29篇
  2012年   20篇
  2011年   37篇
  2010年   17篇
  2009年   10篇
  2008年   21篇
  2007年   21篇
  2006年   24篇
  2005年   31篇
  2004年   22篇
  2003年   14篇
  2002年   14篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1997年   1篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   7篇
  1990年   4篇
  1988年   1篇
  1987年   4篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有407条查询结果,搜索用时 78 毫秒
11.

Aims

Because the water status of grapevines strongly affects the quality of the grapes and resulting wine, automated and early drought stress detection is important. Plant measurements are very promising for detecting drought stress, but strongly depend on microclimatic changes. Therefore, conventional stress detection methods require threshold values which define when plants start sensing drought stress. There is however no unique method to define these values. In this study, we propose two techniques that overcome this limitation.

Methods

Two statistical methods were used to automatically distinguish between drought and microclimate effects, based on a short preceding full-irrigated period to extract plant behaviour under normal conditions: Unfold Principal Component Analysis (UPCA) and Functional Unfold Principal Component Analysis (FUPCA). Both techniques aimed at detecting when measured sap flow rate or stem diameter variations in grapevine deviated from their normal behaviour due to drought stress.

Results

The models based on sap flow rate had some difficulties to detect stress on days with low atmospheric demands, while those based on stem diameter variations did not show this limitation, but ceased detecting stress when the stem diameter levelled off after a period of severe shrinkage. Nevertheless, stress was successfully detected with both approaches days before visible symptoms appeared.

Conclusions

UPCA and FUPCA based on plant indicators are therefore very promising for early stress detection.  相似文献   
12.
Small‐scale Jatropha cultivation and biodiesel production have the potential of contributing to local development, energy security, and greenhouse gas (GHG) mitigation. In recent years however, the GHG mitigation potential of biofuel crops is heavily disputed due to the occurrence of a carbon debt, caused by CO2 emissions from biomass and soil after land‐use change (LUC). Most published carbon footprint studies of Jatropha report modeled results based on a very limited database. In particular, little empirical data exist on the effects of Jatropha on biomass and soil C stocks. In this study, we used field data to quantify these C pools in three land uses in Mali, that is, Jatropha plantations, annual cropland, and fallow land, to estimate both the Jatropha C debt and its C sequestration potential. Four‐year‐old Jatropha plantations hold on average 2.3 Mg C ha?1 in their above‐ and belowground woody biomass, which is considerably lower compared to results from other regions. This can be explained by the adverse growing conditions and poor local management. No significant soil organic carbon (SOC) sequestration could be demonstrated after 4 years of cultivation. While the conversion of cropland to Jatropha does not entail significant C losses, the replacement of fallow land results in an average C debt of 34.7 Mg C ha?1, mainly caused by biomass removal (73%). Retaining native savannah woodland trees on the field during LUC and improved crop management focusing on SOC conservation can play an important role in reducing Jatropha's C debt. Although planting Jatropha on degraded, carbon‐poor cropland results in a limited C debt, the low biomass production, and seed yield attained on these lands reduce Jatropha's potential to sequester C and replace fossil fuels. Therefore, future research should mainly focus on increasing Jatropha's crop productivity in these degraded lands.  相似文献   
13.
14.
15.
Translation initiation is a critical early step in the replication cycle of the positive-sense, single-stranded RNA genome of noroviruses, a major cause of gastroenteritis in humans. Norovirus RNA, which has neither a 5´ m7G cap nor an internal ribosome entry site (IRES), adopts an unusual mechanism to initiate protein synthesis that relies on interactions between the VPg protein covalently attached to the 5´-end of the viral RNA and eukaryotic initiation factors (eIFs) in the host cell. For murine norovirus (MNV) we previously showed that VPg binds to the middle fragment of eIF4G (4GM; residues 652–1132). Here we have used pull-down assays, fluorescence anisotropy, and isothermal titration calorimetry (ITC) to demonstrate that a stretch of ~20 amino acids at the C terminus of MNV VPg mediates direct and specific binding to the HEAT-1 domain within the 4GM fragment of eIF4G. Our analysis further reveals that the MNV C terminus binds to eIF4G HEAT-1 via a motif that is conserved in all known noroviruses. Fine mutagenic mapping suggests that the MNV VPg C terminus may interact with eIF4G in a helical conformation. NMR spectroscopy was used to define the VPg binding site on eIF4G HEAT-1, which was confirmed by mutagenesis and binding assays. We have found that this site is non-overlapping with the binding site for eIF4A on eIF4G HEAT-1 by demonstrating that norovirus VPg can form ternary VPg-eIF4G-eIF4A complexes. The functional significance of the VPg-eIF4G interaction was shown by the ability of fusion proteins containing the C-terminal peptide of MNV VPg to inhibit in vitro translation of norovirus RNA but not cap- or IRES-dependent translation. These observations define important structural details of a functional interaction between norovirus VPg and eIF4G and reveal a binding interface that might be exploited as a target for antiviral therapy.  相似文献   
16.
Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global‐change drivers such as climate change or atmospheric deposition, as well as to local land‐use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global‐change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global‐change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management for Quercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global‐change drivers, with species‐specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefited Fraxinus, but negatively affected Quercus’ growth, highlighting species‐specific interactive tree growth responses to combined drivers. For Fagus, a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures on Quercus’ growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global‐change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.  相似文献   
17.
Menthol, a secondary alcohol produced by the peppermint herb, Mentha piperita, is widely used in the food and pharmaceutical industries as a cooling/soothing compound and odorant. It induces Ca2+ influx in a subset of sensory neurons from dorsal root and trigeminal ganglia, due to activation of TRPM8, a Ca2+-permeable, cold-activated member of the TRP superfamily of cation channels. Menthol also induces Ca2+ release from intracellular stores in several TRPM8-expressing cell types, which has led to the suggestion that TRPM8 can function as an intracellular Ca2+-release channel. Here we show that menthol induces Ca2+ release from intracellular stores in four widely used cell lines (HEK293, lymph node carcinoma of the prostate (LNCaP), Chinese hamster ovary (CHO), and COS), and provide several lines of evidence indicating that this release pathway is TRPM8-independent: 1) menthol-induced Ca2+ release was potentiated at higher temperatures, which contrasts to the cold activation of TRPM8; 2) overexpression of TRPM8 did not enhance the menthol-induced Ca2+) release; 3) menthol-induced Ca2+ release was mimicked by geraniol and linalool, which are structurally related to menthol, but not by the more potent TRPM8 agonists icilin or eucalyptol; and 4) TRPM8 expression in HEK293 cells was undetectable at the protein and mRNA levels. Moreover, using a novel TRPM8-specific antibody we demonstrate that both heterologously expressed TRPM8 (in HEK293 cells) and endogenous TRPM8 (in LNCaP cells) are mainly localized in the plasma membrane, which contrast to previous localization studies using commercial anti-TRPM8 antibodies. Finally, aequorin-based measurements demonstrate that the TRPM8-independent menthol-induced Ca2+ release originates from both endoplasmic reticulum and Golgi compartments.  相似文献   
18.
Box blight is a widespread disease of Buxus caused by the pathogen Calonectria pseudonaviculata. It is responsible for significant losses in nurseries, gardens and wild boxwood populations. Our goal was to maximize the efficiency of a breeding programme towards increased disease resistance. The use of artificial inoculation of young F1 seedlings with Cpseudonaviculata spores under greenhouse conditions appeared to be a reliable tool for early selection of interesting prebreeding material. Overall, the four hybrid populations screened showed a segregating behaviour between their parents when determining the percentage of diseased leaves and lesion diameter. Genotypes were also found with an increased tolerance as compared to the parental species. Approximately 50% of the seedlings had the same score for both parameters after artificial inoculation in the greenhouse and in the field. Of the seedlings that showed severe symptoms in the greenhouse, <15% showed no disease symptoms in the field. Therefore, for larger breeding programmes, we propose a two‐step selection procedure: first artificial inoculation at seedling level to eliminate all genotypes with severe symptoms and then evaluation of the remaining seedlings in the field. Using this strategy, we were able to select several genotypes in our four hybrid populations with improved resistance to Cpseudonaviculata.  相似文献   
19.
20.
Fluorescent in situ hybridization with a 16S rRNA probe specific for Verrucomicrobia was used to (i) confirm the division-level identity of and (ii) study the behavior of the obligate intracellular verrucomicrobium "Candidatus Xiphinematobacter" in its nematode hosts. Endosymbionts in the egg move to the pole where the gut primordium arises; hence, they populate the intestinal epithelia of juvenile worms. During the host's molt to adult female, the endosymbionts concentrate around the developing ovaries to occupy the ovarian wall. Some bacteria are enclosed in the ripening oocytes for vertical transmission. Verrucomicrobia in males stay outside the testes because the tiny spermatozoids are not suitable for transmission of cytoplasmic bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号