首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   54篇
  国内免费   9篇
  2022年   5篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   15篇
  2014年   13篇
  2013年   14篇
  2012年   10篇
  2011年   16篇
  2010年   12篇
  2009年   11篇
  2008年   13篇
  2007年   10篇
  2006年   21篇
  2005年   5篇
  2004年   7篇
  2003年   10篇
  2002年   9篇
  2001年   7篇
  2000年   7篇
  1999年   7篇
  1998年   11篇
  1997年   7篇
  1996年   9篇
  1995年   2篇
  1994年   11篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1988年   2篇
  1987年   5篇
  1986年   7篇
  1985年   11篇
  1984年   4篇
  1983年   2篇
  1982年   6篇
  1981年   2篇
  1979年   2篇
  1978年   4篇
  1977年   4篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1972年   2篇
  1970年   2篇
  1968年   3篇
  1960年   2篇
  1954年   2篇
排序方式: 共有347条查询结果,搜索用时 171 毫秒
31.
Tryptophan decarboxylase (TDC) is a cytosolic enzyme that catalyzes an early step of the terpenoid indole alkaloid biosynthetic pathway by decarboxylation of L-tryptophan to produce the protoalkaloid tryptamine. In the present study, recombinant TDC was targeted to the chloroplast, cytosol, and endoplasmic reticulum (ER) of tobacco (Nicotiana tabacum) plants to evaluate the effects of subcellular compartmentation on the accumulation of functional enzyme and its corresponding enzymatic product. TDC accumulation and in vivo function was significantly affected by the subcellular localization. Immunoblot analysis demonstrated that chloroplast-targeted TDC had improved accumulation and/or stability when compared with the cytosolic enzyme. Because ER-targeted TDC was not detectable by immunoblot analysis and tryptamine levels found in transient expression studies and in transgenic plants were low, it was concluded that the recombinant TDC was most likely unstable if ER retained. Targeting TDC to the chloroplast stroma resulted in the highest accumulation level of tryptamine so far reported in the literature for studies on heterologous TDC expression in tobacco. However, plants accumulating high levels of functional TDC in the chloroplast developed a lesion-mimic phenotype that was probably triggered by the relatively high accumulation of tryptamine in this compartment. We demonstrate that subcellular targeting may provide a useful strategy for enhancing accumulation and/or stability of enzymes involved in secondary metabolism and to divert metabolic flux toward desired end products. However, metabolic engineering of plants is a very demanding task because unexpected, and possibly unwanted, effects may be observed on plant metabolism and/or phenotype.  相似文献   
32.
Systemic lupus erythematosus (SLE) is the prototype of a cluster of diseases that are characterized by a loss of self tolerance and chronic inflammation in organs including skin, kidney, brain and joints. Researchers have long debated the varying contributions of the components of the immune system to the pathogenesis of SLE, but the emigration of leucocytes from the microcirculation, and the subsequent tissue inflammation mediated by these inflammatory cells, are key features of chronic inflammation seen in SLE. Macrophage migration inhibitory factor (MIF) is a broad-spectrum pro-inflammatory cytokine. We hypothesize that MIF is an important inflammatory mediator in the perpetuation of immune activation in SLE, via its effects on activation of T and B cells, and endothelial and effector cells. As MIF exerts anti-apoptotic effects, it may also play a role in promoting abnormal survival of autoreactive lymphocytes, thus perpetuating autoimmune reactivity. In addition, MIF has a unique relationship with glucocorticoids, in that MIF can override the effects of glucocorticoids and may be important in steroid resistance. By virtue of its pluripotent functions, we propose that MIF may be a critical mediator of inflammation and damage in SLE, and that targeting of MIF may offer therapeutic benefits in this disease.  相似文献   
33.
Sulfur metabolism depends on the iron-containing porphinoid siroheme. In Salmonella enterica, the S-adenosyl-L-methionine (SAM)-dependent bismethyltransferase, dehydrogenase and ferrochelatase, CysG, synthesizes siroheme from uroporphyrinogen III (uro'gen III). The reactions mediated by CysG encompass two branchpoint intermediates in tetrapyrrole biosynthesis, diverting flux first from protoporphyrin IX biosynthesis and then from cobalamin (vitamin B(12)) biosynthesis. We determined the first structure of this multifunctional siroheme synthase by X-ray crystallography. CysG is a homodimeric gene fusion product containing two structurally independent modules: a bismethyltransferase and a dual-function dehydrogenase-chelatase. The methyltransferase active site is a deep groove with a hydrophobic patch surrounded by hydrogen bond donors. This asymmetric arrangement of amino acids may be important in directing substrate binding. Notably, our structure shows that CysG is a phosphoprotein. From mutational analysis of the post-translationally modified serine, we suggest a conserved role for phosphorylation in inhibiting dehydrogenase activity and modulating metabolic flux between siroheme and cobalamin pathways.  相似文献   
34.
Two cDNA clones were isolated from pea (Pisum sativum L.) and their deduced amino acid sequences shown to have significant homology to phosphoglucomutases from eukaryotic and prokaryotic sources. The longer cDNA contained a putative transit-peptide-encoding sequence, supporting the hypothesis that the isolated clones represent the cytosolic and plastidial isoforms of phosphoglucomutase in pea. Plastid protein import assays confirmed that the putative plastidial isoform was targeted to the plastid stroma where it was proteolytically processed. Expression, co-segregation, linkage, and molecular analyses have confirmed that the rug3 locus of pea encodes plastidial phosphoglucomutase. Mutations at this locus result in a near-starchless phenotype of the plant.  相似文献   
35.
Multi-drug-resistant bacteria pose a significant threat to public health. The role of the environment in the overall rise in antibiotic-resistant infections and risk to humans is largely unknown. This study aimed to evaluate drivers of antibiotic-resistance levels across the River Thames catchment, model key biotic, spatial and chemical variables and produce predictive models for future risk assessment. Sediment samples from 13 sites across the River Thames basin were taken at four time points across 2011 and 2012. Samples were analysed for class 1 integron prevalence and enumeration of third-generation cephalosporin-resistant bacteria. Class 1 integron prevalence was validated as a molecular marker of antibiotic resistance; levels of resistance showed significant geospatial and temporal variation. The main explanatory variables of resistance levels at each sample site were the number, proximity, size and type of surrounding wastewater-treatment plants. Model 1 revealed treatment plants accounted for 49.5% of the variance in resistance levels. Other contributing factors were extent of different surrounding land cover types (for example, Neutral Grassland), temporal patterns and prior rainfall; when modelling all variables the resulting model (Model 2) could explain 82.9% of variations in resistance levels in the whole catchment. Chemical analyses correlated with key indicators of treatment plant effluent and a model (Model 3) was generated based on water quality parameters (contaminant and macro- and micro-nutrient levels). Model 2 was beta tested on independent sites and explained over 78% of the variation in integron prevalence showing a significant predictive ability. We believe all models in this study are highly useful tools for informing and prioritising mitigation strategies to reduce the environmental resistome.  相似文献   
36.
37.
The aims of the present study were to investigate the relationship of aerobic and anaerobic parameters with 400 m performance, and establish which variable better explains long distance performance in swimming. Twenty-two swimmers (19.1±1.5 years, height 173.9±10.0 cm, body mass 71.2±10.2 kg; 76.6±5.3% of 400 m world record) underwent a lactate minimum test to determine lactate minimum speed (LMS) (i.e., aerobic capacity index). Moreover, the swimmers performed a 400 m maximal effort to determine mean speed (S400m), peak oxygen uptake (V.O2PEAK) and total anaerobic contribution (CANA). The CANA was assumed as the sum of alactic and lactic contributions. Physiological parameters of 400 m were determined using the backward extrapolation technique (V.O2PEAK and alactic contributions of CANA) and blood lactate concentration analysis (lactic anaerobic contributions of CANA). The Pearson correlation test and backward multiple regression analysis were used to verify the possible correlations between the physiological indices (predictor factors) and S400m (independent variable) (p < 0.05). Values are presented as mean ± standard deviation. Significant correlations were observed between S400m (1.4±0.1 m·s-1) and LMS (1.3±0.1 m·s-1; r = 0.80), V.O2PEAK (4.5±3.9 L·min-1; r = 0.72) and CANA (4.7±1.5 L·O2; r= 0.44). The best model constructed using multiple regression analysis demonstrated that LMS and V.O2PEAK explained 85% of the 400 m performance variance. When backward multiple regression analysis was performed, CANA lost significance. Thus, the results demonstrated that both aerobic parameters (capacity and power) can be used to predict 400 m swimming performance.  相似文献   
38.
39.
40.
This study reports a series of systematic BLAST searches of nematode ESTs on the Genbank database, using search strings derived from known nematode FLPs (those encoded by Caenorhabditis elegans flp genes as well as those isolated from other nematodes including Ascaris suum), as well as query sequences representative of theoretical FLPs. Over 1000 putative FLP-encoding ESTs were identified from multiple nematode species. A total of 969 ESTs representing sequelogs of the 23 known C. elegans flp genes were identified in 32 species, from clades I, III, IV and V. Numerical analysis of EST numbers suggests that flp-1, flp-11 and flp-14 are amongst the most highly expressed flp genes. Speculative BLAST searches were performed using theoretical FLP C-termini as queries, in an attempt to identify putative novel FLP sequences in the EST database. These searches yielded eight multi-species sequelogs encoding FLPs with novel signatures that are believed to identify distinct flp genes. These novel genes encode 25 distinct previously unidentified FLPs, and raise the current total of known nematode flp genes to 31. Additionally, software-based analyses of the presence of signal peptides were performed, with signal peptides being identified on at least one member of each group of flp ESTs, further confirming their status as secreted peptides. The data reveal that nematode FLPs encompass the most complex neuropeptide family known within the metazoa. Moreover, individual FLPs and FLP motifs are highly conserved across the nematodes with little evidence for inter-clade or inter-lifestyle variation, supporting their fundamental role in free-living and parasitic species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号