首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   943篇
  免费   82篇
  1025篇
  2021年   9篇
  2020年   11篇
  2019年   14篇
  2017年   11篇
  2016年   22篇
  2015年   32篇
  2014年   25篇
  2013年   45篇
  2012年   28篇
  2011年   39篇
  2010年   16篇
  2009年   18篇
  2008年   36篇
  2007年   28篇
  2006年   26篇
  2005年   20篇
  2004年   28篇
  2003年   35篇
  2002年   34篇
  2001年   39篇
  2000年   34篇
  1999年   20篇
  1998年   7篇
  1997年   21篇
  1996年   11篇
  1995年   10篇
  1994年   12篇
  1993年   14篇
  1992年   15篇
  1991年   10篇
  1990年   15篇
  1989年   10篇
  1988年   20篇
  1987年   12篇
  1986年   15篇
  1985年   7篇
  1984年   14篇
  1983年   11篇
  1982年   12篇
  1981年   9篇
  1980年   9篇
  1976年   11篇
  1975年   13篇
  1974年   12篇
  1973年   14篇
  1972年   8篇
  1971年   7篇
  1969年   14篇
  1968年   10篇
  1966年   14篇
排序方式: 共有1025条查询结果,搜索用时 0 毫秒
141.
Delta-opioid receptors (DORs) are associated with ischemic preconditioning and vagal transmission in the sinoatrial (SA) node and atria. Although functional studies suggested that DORs are prejunctional on parasympathetic nerve terminals, their precise location remains unconfirmed. DORs were colocalized in tissue slices and synaptosomes from the canine right atrium and SA node along with cholinergic and adrenergic markers, vesicular acetylcholine transporter (VAChT), and tyrosine hydroxylase (TH). Synapsin I immunofluorescence verified the neural character of tissue structures and isolated synaptosomes. Acetylcholine and norepinephrine measurements suggested the presence of both cholinergic and adrenergic synaptosomes. Fluorescent analysis of VAChT and TH signals indicated that >80% of the synapsin-positive synaptosomes were of cholinergic origin and <8% were adrenergic. DORs colocalized 75-85% with synapsin in tissue slices from both atria and SA node. The colocalization was equally strong (85%) for nodal synaptosomes but less so for atrial synaptosomes (57%). Colocalization between DOR and VAChT was 75-85% regardless of the source. Overlap between DOR and TH was uniformly low, ranging from 8% to 17%. Western blots with synaptosomal extracts confirmed two DOR-positive bands at molecular masses corresponding to those reported for DOR monomers and dimers. The abundance of DOR was greater in nodal synaptosomes than in atrial synaptosomes, largely attributable to a greater abundance of monomers in the SA node. The abundant nodal and atrial DORs predominantly associated with cholinergic nerve terminals support the hypothesis that prejunctional DORs regulate vagal transmission locally within the heart.  相似文献   
142.
The 'invasiveness' of an alien species depends partly on its ability to become abundant and widespread in its new environment. While competitiveness may be an important component of this ability, so too is the abundance of resource or habitat. First, the local carrying capacity will depend on the local favourability of the habitat, hence the global density will depend on how widespread the habitat is. Second, and more subtly, the local density will also be affected by the global extent of favourable habitat, because of losses occasioned by dispersal when the population redistributes; these losses should be fewer the greater the contiguous area of favourable habitat or the more patches of such habitat across the landscape. Here we describe a model which demonstrates how habitat availability affects an invading speciesèquilibrium abundance, hence its invasiveness. The model shows that local density is likely to be an increasing function of global habitat abundance, and global density to be a non-linear, concave-up function of global habitat abundance. Examples are given to support the model's predictions, taken largely from alien species in New Zealand.  相似文献   
143.
144.
Methylaspartate ammonia-lyase (3-methylaspartase, MAL; EC ) catalyzes the reversible anti elimination of ammonia from L-threo-(2S,3S)-3-methylaspartic acid to give mesaconic acid. This reaction lies on the main catabolic pathway for glutamate in Clostridium tetanomorphum. MAL requires monovalent and divalent cation cofactors for full catalytic activity. The enzyme has attracted interest because of its potential use as a biocatalyst. The structure of C. tetanomorphum MAL has been solved to 1.9-A resolution by the single-wavelength anomalous diffraction method. A divalent metal ion complex of the protein has also been determined. MAL is a homodimer with each monomer consisting of two domains. One is an alpha/beta-barrel, and the other smaller domain is mainly beta-strands. The smaller domain partially occludes the C terminus of the barrel and forms a large cleft. The structure identifies MAL as belonging to the enolase superfamily of enzymes. The metal ion site is located in a large cleft between the domains. Potential active site residues have been identified based on a combination of their proximity to a metal ion site, molecular modeling, and sequence homology. In common with all members of the enolase superfamily, the carboxylic acid of the substrate is co-ordinated by the metal ions, and a proton adjacent to a carboxylic acid group of the substrate is abstracted by a base. In MAL, it appears that Lys(331) removes the alpha-proton of methylaspartic acid. This motif is the defining mechanistic characteristic of the enolase superfamily of which all have a common fold. The degree of structural conservation is remarkable given only four residues are absolutely conserved.  相似文献   
145.
Characterization of segmental flexibility is needed to understand the biological mechanisms of the very large category of functionally diverse proteins, exemplified by the regulators of complement activation, that consist of numerous compact modules or domains linked by short, potentially flexible, sequences of amino acid residues. The use of NMR-derived residual dipolar couplings (RDCs), in magnetically aligned media, to evaluate interdomain motion is established but only for two-domain proteins. We focused on the three N-terminal domains (called CCPs or SCRs) of the important complement regulator, human factor H (i.e., FH1-3). These domains cooperate to facilitate cleavage of the key complement activation-specific protein fragment, C3b, forming iC3b that no longer participates in the complement cascade. We refined a three-dimensional solution structure of recombinant FH1-3 based on nuclear Overhauser effects and RDCs. We then employed a rudimentary series of RDC data sets, collected in media containing magnetically aligned bicelles (disklike particles formed from phospholipids) under three different conditions, to estimate interdomain motions. This circumvents a requirement of previous approaches for technically difficult collection of five independent RDC data sets. More than 80% of conformers of this predominantly extended three-domain molecule exhibit flexions of <40°. Such segmental flexibility (together with the local dynamics of the hypervariable loop within domain 3) could facilitate recognition of C3b via initial anchoring and eventual reorganization of modules to the conformation captured in the previously solved crystal structure of a C3b:FH1-4 complex.  相似文献   
146.
Roots have the ability to change the direction of their forward growth. Sometimes these directional changes are rapid, as in mutations, or they are slower, as in tropisms. The gravitational force is always present and roots have an efficient graviperception mechanism which enables them to initiate gravitropic movements. In trying to model and simulate the course of gravitropic root movements with a view to analyse the component processes, the following aspects of the plant's interaction with gravity have been considered: (1) The level of organization (organism, organ, cell) at which the movement process is expressed; (2) whether the gravity stimulation event is dynamic or static (i.e. whether or not physiologically significant displacements take place with respect to the gravity vector); (3) the sub-systems involved in movement and the processes which they regulate; (4) the mathematical characterization of the relevant sub-systems. A further allied topic is the nature of nutational movements and whether they are linked with gravitropic movements in some way. In considering how they can best be modelled, two types of nutational movements are proponed: stochastic nutation and circumnutation. Most, if not all, natural movements developed in response to static gravistimulation can be viewed as gravimorphisms. This applies at the levels of cell, organ and organism. However, when a system at any one of these levels experiences dynamic gravistimulation, because of its inherent homeostatic properties, it is induced to regenerate a state similar to that previously held. Thus, gravitropism is a regenerative gravimorphic process at the level of the organ.  相似文献   
147.
A model is proposed for the 3-dimensional structure of endothelin, a potent vasoconstrictor and pressor peptide from vascular endothelium. The model is derived through protein structure prediction and circular dichroism studies, and is based on the atomic coordinates for the bee-venom peptide apamin. The model derived shows the same turn-helix motif as observed for apamin and mast-cell degranulating peptide. On the basis of this model we suggest possible strategies for endothelin antagonist design, and note that this motif may be common in a number of peptides acting on channel proteins.  相似文献   
148.
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号