首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   5篇
  84篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2016年   1篇
  2015年   3篇
  2014年   6篇
  2013年   1篇
  2012年   6篇
  2011年   3篇
  2010年   7篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1995年   1篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1983年   4篇
  1981年   1篇
  1974年   3篇
  1969年   1篇
  1968年   2篇
  1966年   2篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
41.
Amyloid diseases, including Alzheimer's disease, are characterized by aggregation of normally functioning proteins or peptides into ordered, β-sheet rich fibrils. Most of the theories on amyloid toxicity focus on the nuclei or oligomers in the fibril formation process. The nuclei and oligomers are transient species, making their full characterization difficult. We have isolated toxic protein species that act like an oligomer and may provide the first evidence of a stable reactive species created by disaggregation of amyloid fibrils. This reactive species was isolated by dissolving amyloid fibrils at high pH and it has a mass >100 kDa and a diameter of 48 ± 15 nm. It seeds the formation of fibrils in a dose dependent manner, but using circular dichroism and deep ultraviolet resonance Raman spectroscopy, the reactive species was found to not have a β-sheet rich structure. We hypothesize that the reactive species does not decompose at high pH and maintains its structure in solution. The remaining disaggregated insulin, excluding the toxic reactive species that elongated the fibrils, returned to native structured insulin. This is the first time, to our knowledge, that a stable reactive species of an amyloid reaction has been separated and characterized by disaggregation of amyloid fibrils.  相似文献   
42.
By means of electron microscopy the longitudinal sections of chemically skinned fibres of rigorised rabbit psoas muscle have been examined at pH of rigorising solutions equal to 6, 7, 8 (I = 0.125) and ionic strengths equal to 0.04, 0.125, 0.34 (pH 7.0). It has been revealed that at pH 6.0 the bands of minor proteins localization in A-disks were seen very distinctly, while at pH 7.0 and I = 0.125 these bands can be revealed only by means of antibody labelling technique. At the ionic strength of 0.34 (pH 7.0) the periodicity of 14.3 nm in thick filaments was clearly observed, which was determined by packing of the myosin rods into the filament shaft and of the myosin heads (cross-bridges) on the filament surface. The number of cross-bridge rows in the filament equals 102. A new scheme of myosin cross-bridge distribution in thick filaments of rabbit psoas muscle has been suggested according to which two rows of cross-bridges at each end of a thick filament are absent. The filament length equals 1.64 +/- 0.01 micron. It has been shown that the length of thick filament as well as the structural organization of their end regions in rabbit psoas muscle and frog sartorius one are different.  相似文献   
43.
We tested the hypothesis that strength exercise after intermittent aerobic exercise might activate signaling pathways that regulate mitochondrial biogenesis (activation of the AMPK and p38 pathways; the expression of PGC-1α, NT-PGC-1α, TFAM, and VEGFA mRNA), protein synthesis (phosphorylation level of p70S6K1Thr389 and eEF2Thr56; the expression IGF-1Ea, IGF-1Ec (MGF), and REDD1 mRNA) and proteolysis (phosphorylation level of FOXO1Ser256; the expression of MURF1, MAFbx, and Myostatin mRNA) in trained skeletal muscles. Nine amateur endurance-trained athletes performed an intermittent aerobic cycling (70 min), followed by one-leg strength exercise (ES: four sets of knee extensions till exhaustion), while the other leg was resting (E). Gene expression and protein level were evaluated in samples from m. vastus lateralis taken before the exercise, 40 min, 5 and 22 h after the aerobic exercise. The phosphorylation level of the АССSer79/222 (an endogenous marker of AMPK activity) and the expression of PGC-1α-related gene TFAM (a marker of mitochondrial biogenesis) were increased after E exercise and did not changed after ES exercise. The expression of PGC-1α and truncated isoform NT-PGC-1α was increased in both legs as well. Insulin concentration in blood was decreased significantly (7.5-fold) after aerobic exercise; the phosphorylation level of FOXOSer256 (a regulator of ubiquitin-related proteolysis) was decreased in both legs, which means that it was activated in both types of exercises; at the same time, the expression of the E3-ubiquitin ligase gene MURF1, its target, was only increased after E exercise. Neither aerobic or combined exercise had a significant effect on the regulation of protein synthesis: there were no changes in either expression of IGF-1Ea and IGF-1Ec(MGF) mRNA isoforms or the phosphorylation levels of markers of protein synthesis p70S6K1Thr389 and eEF2Thr56. Thus, the performance of strength exercise immediately after aerobic one prevented the activation of mitochondrial biogenesis in endurance-trained muscles: activation of AMPK pathway and the expression of TFAM are decreased, while protein synthesis regulation is not affected. At the same time, the strength exercise inhibited the expression of MURF1 gene (a marker of ubiquitin proteasome system), which was induced by aerobic exercise. We suggest that strength exercise performed immediately after intense intermittent aerobic exercise may have a negative effect on aerobic performance if used chronically.  相似文献   
44.
A de novo polypeptide GH6[(GA)3GY(GA)3GE]8GAH6 (YE8) has a significant number of identical weakly interacting β‐strands with the turns and termini functionalized by charged amino acids to control polypeptide folding and aggregation. YE8 exists in a soluble, disordered form at neutral pH but is responsive to changes in pH and ionic strength. The evolution of YE8 secondary structure has been successfully quantified during all stages of polypeptide fibrillation by deep UV resonance Raman (DUVRR) spectroscopy combined with other morphological, structural, spectral, and tinctorial characterization. The YE8 folding kinetics at pH 3.5 are strongly dependent on polypeptide concentration with a lag phase that can be eliminated by seeding with a solution of folded fibrillar YE8. The lag phase of polypeptide folding is concentration dependent leading to the conclusion that β‐sheet folding of the 11‐kDa amyloidogenic polypeptide is completely aggregation driven. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 607–618, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   
45.
Unique epizootic loci were revealed in the summer-autumn complex of the multispecies communities of forest lepidopterans and sawflies in two regions of Novosibirsk oblast and in the Baikal region at the border of the Buryat Republic and Irkutsk oblast. Mass insect mortality was caused by two species of cordycipitoid fungi: Cordyceps militaris and Cordyceps sp. At least 30 species from 7 families of millers (Macroheterocera) and sawflies from the family Cimbicidae were found to be C. militaris hosts. Lepidopterans from the family Thyatiridae are the hosts of the second species, Cordyceps sp. Total mortality was noted for the condition close to optimal for pupation, i.e., in places of mass pupa accumulation. It may be assumed on the basis of the results of the laboratory experiments that, under natural conditions, host insects may be infected by ascospores and conidia at the anamorphic stage.  相似文献   
46.
The design of biomimetic materials through molecular self‐assembly is a growing area of modern nanotechnology. With problems of protein folding, self‐assembly, and sequence–structure relationships as essential in nanotechnology as in biology, the effect of the nucleation of β‐hairpin formation by proline on the folding process has been investigated in model studies. Previously such studies were limited to investigations of the influence of proline on the formation of turns in short peptide sequences. The effect of proline‐based triads on the folding of an 11‐kDa amyloidogenic peptide GH6[(GA)3GY(GA)3GE]8GAH6 ( YE8 ) was investigated by selective substitution of the proline‐substituted triads at the γ‐turn sites. The folding and fibrillation of the singly proline‐substituted polypeptides, e.g., GH6? [(GA)3GY(GA)3GE]7(GA)3GY(GA)3PD? GAH6 ( 8PD ), and doubly proline‐substituted polypeptides, e.g., GH6? [(GA)3GY(GA)3GE]3(GA)3GY(GA)3PD[(GA)3GY(GA)3GE]3(GA)3GY(GA)3PD? GAH6 ( 4,8PD ), were directly monitored by circular dichroism and deep UV resonance Raman and fluorescence spectroscopies. These findings were used to identify the essential folding domains, i.e., the minimum number of β‐strands necessary for stable folding. These experimental findings may be especially useful in the design and construction of peptidic materials for a wide range of applications as well as in understanding the mechanisms of folding critical to fibril formation. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 339–350, 2015.  相似文献   
47.
48.
49.
Amyloid fibrils are β-sheet-rich protein aggregates commonly found in the organs and tissues of patients with various amyloid-associated diseases. Understanding the structural organization of amyloid fibrils can be beneficial for the search of drugs to successfully treat diseases associated with protein misfolding. The structure of insulin fibrils was characterized by deep ultraviolet resonance Raman (DUVRR) and Nuclear Magnetic Resonance (NMR) spectroscopy combined with hydrogen-deuterium exchange. The compositions of the fibril core and unordered parts were determined at single amino acid residue resolution. All three disulfide bonds of native insulin remained intact during the aggregation process, withstanding scrambling. Three out of four tyrosine residues were packed into the fibril core, and another aromatic amino acid, phenylalanine, was located in the unordered parts of insulin fibrils. In addition, using all-atom MD simulations, the disulfide bonds were confirmed to remain intact in the insulin dimer, which mimics the fibrillar form of insulin.  相似文献   
50.
Direct determination of muscle fiber composition is invasive and expensive, with indirect methods also requiring specialist resources and expertise. Performing resistance exercises at 80% 1RM is suggested as a means of indirectly estimating muscle fiber composition, though this hypothesis has never been validated against a direct method. The aim of the study was to investigate the relationship between the number of completed repetitions at 80% 1RM of back squat exercise and muscle fiber composition. Thirty recreationally active participants’ (10 females, 20 males) 1RM back squat load was determined, before the number of consecutive repetitions at 80% 1RM was recorded. The relationship between the number of repetitions and the percentage of fast-twitch fibers from vastus lateralis was investigated. The number of completed repetitions ranged from 5 to 15 and was independent of sex, age, 1RM, training frequency, training type, training experience, BMI or muscle fiber cross-sectional area. The percentage of fast-twitch muscle fibers was inversely correlated with the number of repetitions completed (r = –0.38, P = 0.039). Participants achieving 5 to 8 repetitions (n = 10) had significantly more fast-twitch muscle fibers (57.5 ± 9.5 vs 44.4 ± 11.9%, P = 0.013) than those achieving 11–15 repetitions (n = 11). The remaining participants achieved 9 or 10 repetitions (n = 9) and on average had equal proportion of fast- and slow-twitch muscle fibers. In conclusion, the number of completed repetitions at 80% of 1RM is moderately correlated with muscle fiber composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号