首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   16篇
  2022年   4篇
  2021年   8篇
  2020年   4篇
  2019年   7篇
  2018年   3篇
  2017年   7篇
  2016年   5篇
  2015年   15篇
  2014年   14篇
  2013年   6篇
  2012年   32篇
  2011年   14篇
  2010年   10篇
  2009年   9篇
  2008年   11篇
  2007年   19篇
  2006年   12篇
  2005年   8篇
  2004年   9篇
  2003年   22篇
  2002年   9篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1981年   5篇
  1980年   1篇
  1974年   2篇
  1972年   1篇
排序方式: 共有262条查询结果,搜索用时 15 毫秒
111.
Herbaspirillum seropedicae is an endophytic nitrogen-fixing bacterium that colonizes economically important grasses. In this organism, the amtB gene is co-transcribed with two other genes: glnK that codes for a PII-like protein and orf1 that codes for a probable periplasmatic protein of unknown function. The expression of the orf1glnKamtB operon is increased under nitrogen-limiting conditions and is dependent on NtrC. An amtB mutant failed to transport methylammonium. Post-translational control of nitrogenase was also partially impaired in this mutant, since a complete switch-off of nitrogenase after ammonium addition was not observed. This result suggests that the AmtB protein is involved in the signaling pathway for the reversible inactivation of nitrogenase in H. seropedicae.  相似文献   
112.

Background

Mangrove forests are of global ecological and economic importance, but are also one of the world''s most threatened ecosystems. Here we present a case study examining the influence of the rhizosphere on the structural composition and diversity of mangrove bacterial communities and the implications for mangrove reforestation approaches using nursery-raised plants.

Methodology/Principal Findings

A barcoded pyrosequencing approach was used to assess bacterial diversity in the rhizosphere of plants in a nursery setting, nursery-raised transplants and native (non-transplanted) plants in the same mangrove habitat. In addition to this, we also assessed bacterial composition in the bulk sediment in order to ascertain if the roots of mangrove plants affect sediment bacterial composition. We found that mangrove roots appear to influence bacterial abundance and composition in the rhizosphere. Due to the sheer abundance of roots in mangrove habitat, such an effect can have an important impact on the maintenance of bacterial guilds involved in nutrient cycling and other key ecosystem functions. Surprisingly, we also noted a marked impact of initial nursery conditions on the rhizosphere bacterial composition of replanted mangrove trees. This result is intriguing because mangroves are periodically inundated with seawater and represent a highly dynamic environment compared to the more controlled nursery environment.

Conclusions/Significance

In as far as microbial diversity and composition influences plant growth and health, this study indicates that nursery conditions and early microbial colonization patterns of the replants are key factors that should be considered during reforestation projects. In addition to this, our results provide information on the role of the mangrove rhizosphere as a habitat for bacteria from estuarine sediments.  相似文献   
113.
Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization.  相似文献   
114.

Background

A family of secreted cathepsin L proteases with differential activities is essential for host colonization and survival in the parasitic flatworm Fasciola hepatica. While the blood feeding adult secretes predominantly FheCL1, an enzyme with a strong preference for Leu at the S2 pocket of the active site, the infective stage produces FheCL3, a unique enzyme with collagenolytic activity that favours Pro at P2.

Methodology/Principal Findings

Using a novel unbiased multiplex substrate profiling and mass spectrometry methodology (MSP-MS), we compared the preferences of FheCL1 and FheCL3 along the complete active site cleft and confirm that while the S2 imposes the greatest influence on substrate selectivity, preferences can be indicated on other active site subsites. Notably, we discovered that the activity of FheCL1 and FheCL3 enzymes is very different, sharing only 50% of the cleavage sites, supporting the idea of functional specialization. We generated variants of FheCL1 and FheCL3 with S2 and S3 residues by mutagenesis and evaluated their substrate specificity using positional scanning synthetic combinatorial libraries (PS-SCL). Besides the rare P2 Pro preference, FheCL3 showed a distinctive specificity at the S3 pocket, accommodating preferentially the small Gly residue. Both P2 Pro and P3 Gly preferences were strongly reduced when Trp67 of FheCL3 was replaced by Leu, rendering the enzyme incapable of digesting collagen. In contrast, the inverse Leu67Trp substitution in FheCL1 only slightly reduced its Leu preference and improved Pro acceptance in P2, but greatly increased accommodation of Gly at S3.

Conclusions/Significance

These data reveal the significance of S2 and S3 interactions in substrate binding emphasizing the role for residue 67 in modulating both sites, providing a plausible explanation for the FheCL3 collagenolytic activity essential to host invasion. The unique specificity of FheCL3 could be exploited in the design of specific inhibitors selectively directed to specific infective stage parasite proteinases.  相似文献   
115.
Bladder carcinogenesis is believed to follow two alternative pathways driven by the loss of chromosome 9 and the gain of chromosome 7, albeit other nonrandom copy number alterations (CNAs) were identified. However, confirmation studies are needed since many aspects of this model remain unclear and considerable heterogeneity among cases has emerged. One of the purposes of this study was to evaluate the performance of a targeted test (UroVysion assay) widely used for the detection of Transitional Cell Carcinoma (TCC) of the bladder, in two different types of material derived from the same tumor. We compared the results of UroVysion test performed on Freshly Isolated interphasic Nuclei (FIN) and on Formalin Fixed Paraffin Embedded (FFPE) tissues from 22 TCCs and we didn't find substantial differences. A second goal was to assess the concordance between array-CGH profiles and the targeted chromosomal profiles of UroVysion assay on an additional set of 10 TCCs, in order to evaluate whether UroVysion is an adequately sensitive method for the identification of selected aneuploidies and nonrandom CNAs in TCCs. Our results confirmed the importance of global genomic screening methods, that is array based CGH, to comprehensively determine the genomic profiles of large series of TCCs tumors. However, this technique has yet some limitations, such as not being able to detect low level mosaicism, or not detecting any change in the number of copies for a kind of compensatory effect due to the presence of high cellular heterogeneity. Thus, it is still advisable to use complementary techniques such as array-CGH and FISH, as the former is able to detect alterations at the genome level not excluding any chromosome, but the latter is able to maintain the individual data at the level of single cells, even if it focuses on few genomic regions.  相似文献   
116.

Background

The temporal expression and secretion of distinct members of a family of virulence-associated cathepsin L cysteine peptidases (FhCL) correlates with the entry and migration of the helminth pathogen Fasciola hepatica in the host. Thus, infective larvae traversing the gut wall secrete cathepsin L3 (FhCL3), liver migrating juvenile parasites secrete both FhCL1 and FhCL2 while the mature bile duct parasites, which are obligate blood feeders, secrete predominantly FhCL1 but also FhCL2.

Methodology/Principal Findings

Here we show that FhCL1, FhCL2 and FhCL3 exhibit differences in their kinetic parameters towards a range of peptide substrates. Uniquely, FhCL2 and FhCL3 readily cleave substrates with Pro in the P2 position and peptide substrates mimicking the repeating Gly-Pro-Xaa motifs that occur within the primary sequence of collagen. FhCL1, FhCL2 and FhCL3 hydrolysed native type I and II collagen at neutral pH but while FhCL1 cleaved only non-collagenous (NC, non-Gly-X-Y) domains FhCL2 and FhCL3 exhibited collagenase activity by cleaving at multiple sites within the α1 and α2 triple helix regions (Col domains). Molecular simulations created for FhCL1, FhCL2 and FhCL3 complexed to various seven-residue peptides supports the idea that Trp67 and Tyr67 in the S2 subsite of the active sites of FhCL3 and FhCL2, respectively, are critical to conferring the unique collagenase-like activity to these enzymes by accommodating either Gly or Pro residues at P2 in the substrate. The data also suggests that FhCL3 accommodates hydroxyproline (Hyp)-Gly at P3-P2 better than FhCL2 explaining the observed greater ability of FhCL3 to digest type I and II collagens compared to FhCL2 and why these enzymes cleave at different positions within the Col domains.

Conclusions/Significance

These studies further our understanding of how this helminth parasite regulates peptidase expression to ensure infection, migration and establishment in host tissues.  相似文献   
117.

Background

Experimental autoimmune encephalomyelitis (EAE) is used as an animal model for human multiple sclerosis (MS), which is an inflammatory demyelinating autoimmune disease of the central nervous system characterized by activation of Th1 and/or Th17 cells. Human autoimmune diseases can be either exacerbated or suppressed by infectious agents. Recent studies have shown that regulatory T cells play a crucial role in the escape mechanism of Plasmodium spp. both in humans and in experimental models. These cells suppress the Th1 response against the parasite and prevent its elimination. Regulatory T cells have been largely associated with protection or amelioration in several autoimmune diseases, mainly by their capacity to suppress proinflammatory response.

Methodology/Principal Findings

In this study, we verified that CD4+CD25+ regulatory T cells (T regs) generated during malaria infection (6 days after EAE induction) interfere with the evolution of EAE. We observed a positive correlation between the reduction of EAE clinical symptoms and an increase of parasitemia levels. Suppression of the disease was also accompanied by a decrease in the expression of IL-17 and IFN-γ and increases in the expression of IL-10 and TGF-β1 relative to EAE control mice. The adoptive transfer of CD4+CD25+ cells from P. chabaudi-infected mice reduced the clinical evolution of EAE, confirming the role of these T regs.

Conclusions/Significance

These data corroborate previous findings showing that infections interfere with the prevalence and evolution of autoimmune diseases by inducing regulatory T cells, which regulate EAE in an apparently non-specific manner.  相似文献   
118.

Background

The diagnosis of malignant hematologic diseases has become increasingly complex during the last decade. It is based on the interpretation of results from different laboratory analyses, which range from microscopy to gene expression profiling. Recently, a method for the analysis of RNA phenotypes has been developed, the nCounter technology (Nanostring® Technologies), which allows for simultaneous quantification of hundreds of RNA molecules in biological samples. We evaluated this technique in a Swiss multi-center study on eighty-six samples from acute leukemia patients.

Methods

mRNA and protein profiles were established for normal peripheral blood and bone marrow samples. Signal intensities of the various tested antigens with surface expression were similar to those found in previously performed Affymetrix microarray analyses. Acute leukemia samples were analyzed for a set of twenty-two validated antigens and the Pearson Correlation Coefficient for nCounter and flow cytometry results was calculated.

Results

Highly significant values between 0.40 and 0.97 were found for the twenty-two antigens tested. A second correlation analysis performed on a per sample basis resulted in concordant results between flow cytometry and nCounter in 44–100% of the antigens tested (mean = 76%), depending on the number of blasts present in a sample, the homogeneity of the blast population, and the type of leukemia (AML or ALL).

Conclusions

The nCounter technology allows for fast and easy depiction of a mRNA profile from hematologic samples. This technology has the potential to become a valuable tool for the diagnosis of acute leukemias, in addition to multi-color flow cytometry.  相似文献   
119.

Background

Carcinoma of the gallbladder (GBC) clinically mimics benign gallbladder diseases and often escapes detection until advanced stage. Despite the frequency of cholecystectomy, diagnosis of GBC remains problematic in many situations. We sought to identify pathologic features that contribute to the difficulty in recognition of GBC.

Methods

We identified 23 patients (ranged from 45 to 86 years, male to female ratio 1:4.5) with carcinoma involving the gallbladder referred to an academic medical center over a period of 10 years for study. This includes 10 cases of primary GBC, 6 cases of metastatic tumor to gallbladder, 6 cases of directly invasive adenocarcinoma arising elsewhere in the biliary tree, and one case of unidentified origin adenocarcinoma. Primary tumors include adenocarcinoma not otherwise specified (NOS) in 6 cases, papillary adenocarcinoma in 2 cases, and single cases of undifferentiated carcinoma and combined adenocarcinoma and neuroendocrine carcinoma (NEC). Metastatic tumors to gallbladder were from a wide range of primary sites, predominantly the gastrointestinal tract.

Results

These cases illustrate seven potential pitfalls which can be encountered. These include: 1) mistakenly making a diagnosis of adenocarcinoma of gallbladder when only benign lesions such as deeply penetrating Rokitansky-Aschoff sinuses are present (overdiagnosis), 2) misdiagnosing well-differentiated invasive carcinoma with minimal disease as benign disease (underdiagnosis), 3) differentiating between primary NEC of gallbladder and metastasis, 4) confusing primary mucinous adenocarcinoma of gallbladder with pseudomyxoma peritonei from a low grade appendiceal neoplasm disseminated to gallbladder, 5) confusing gangrenous necrosis related to cholecystitis with geographic tumoral necrosis, 6) undersampling early, grossly occult disease, and 7) misinterpreting extracellular mucin pools.

Conclusions

Clinical history and a high index of suspicion are prerequisite to detecting GBC. Detection of GBC at an early stage is difficult because the symptoms mimic benign gallbladder diseases. Misinterpretation of subtle microscopic abnormalities contributes diagnostic failures in early cases. Careful attention to any evidence of mural thickening, thorough sampling, particularly in older patients, and close examination of any deeply situated glandular structures are critical. Correlations with radiographic and clinical findings are important helps to avoid misdiagnosis in this commonly resected organ.  相似文献   
120.
Porphyrias are diseases caused by partial deficiencies of haem biosynthesis enzymes. Acute porphyrias are characterized by a neuropsychiatric syndrome with intermittent induction of hepatic ALAS1 (δ-aminolaevulinate synthase 1), the first and rate-limiting enzyme of the haem pathway. Acute porphyria attacks are usually treated by the administration of glucose; its effect is apparently related to its ability to inhibit ALAS1 by modulating insulin plasma levels. It has been shown that insulin blunts hepatocyte ALAS1 induction, by disrupting the interaction of FOXO1 (forkhead box O1) and PGC-1α (peroxisome-proliferator-activated receptor γ co-activator 1α). We evaluated the expression of ALAS1 in a murine model of diabetes and determined the effects of the insulinomimetic vanadate on the enzyme regulation to evaluate its potential for the treatment of acute porphyria attacks. Both ALAS1 mRNA and protein content were induced in diabetic animals, accompanied by decreased Akt phosphorylation and increased nuclear FOXO1, PGC-1α and FOXO1-PGC-1α complex levels. Vanadate reversed ALAS1 induction, with a concomitant PI3K (phosphoinositide 3-kinase)/Akt pathway activation and subsequent reduction of nuclear FOXO1, PGC-1α and FOXO1-PGC-1α complex levels. These findings support the notion that the FOXO1-PGC-1α complex is involved in the control of ALAS1 expression and suggest further that a vanadate-based therapy could be beneficial for the treatment of acute porphyria attacks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号