首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   584篇
  免费   63篇
  国内免费   2篇
  649篇
  2023年   3篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   8篇
  2017年   3篇
  2016年   8篇
  2015年   12篇
  2014年   24篇
  2013年   25篇
  2012年   38篇
  2011年   40篇
  2010年   22篇
  2009年   13篇
  2008年   31篇
  2007年   35篇
  2006年   25篇
  2005年   23篇
  2004年   21篇
  2003年   24篇
  2002年   23篇
  2001年   30篇
  2000年   24篇
  1999年   22篇
  1998年   8篇
  1997年   8篇
  1996年   8篇
  1995年   6篇
  1994年   7篇
  1993年   4篇
  1992年   10篇
  1991年   16篇
  1990年   11篇
  1989年   7篇
  1988年   5篇
  1987年   10篇
  1985年   6篇
  1984年   7篇
  1983年   7篇
  1982年   4篇
  1980年   8篇
  1979年   9篇
  1978年   5篇
  1977年   4篇
  1976年   4篇
  1975年   4篇
  1972年   2篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
排序方式: 共有649条查询结果,搜索用时 15 毫秒
21.
Cellular longevity is a complex process relevant to age-related diseases including but not limited to chronic illness such as diabetes and metabolic syndromes. Two gene families have been shown to play a role in the genetic regulation of longevity; the Sirtuin and FOXO families. It is also established that nuclear Sirtuins interact with and under specific cellular conditions regulate the activity of FOXO gene family proteins. Thus, we hypothesize that a mitochondrial Sirtuin (SIRT3) might also interact with and regulate the activity of the FOXO proteins. To address this we used HCT116 cells overexpressing either wild-type or a catalytically inactive dominant negative SIRT3. For the first time we establish that FOXO3a is also a mitochondrial protein and forms a physical interaction with SIRT3 in mitochondria. Overexpression of a wild-type SIRT3 gene increase FOXO3a DNA-binding activity as well as FOXO3a dependent gene expression. Biochemical analysis of HCT116 cells over expressing the deacetylation mutant, as compared to wild-type SIRT3 gene, demonstrated an overall oxidized intracellular environment, as monitored by increase in intracellular superoxide and oxidized glutathione levels. As such, we propose that SIRT3 and FOXO3a comprise a potential mitochondrial signaling cascade response pathway.  相似文献   
22.
The activation of six target enzymes by calmodulin phosphorylated on Tyr99 (PCaM) and the binding affinities of their respective calmodulin binding domains were tested. The six enzymes were: myosin light chain kinase (MLCK), 3'-5'-cyclic nucleotide phosphodiesterase (PDE), plasma membrane (PM) Ca2+-ATPase, Ca2+-CaM dependent protein phosphatase 2B (calcineurin), neuronal nitric oxide synthase (NOS) and type II Ca2+-calmodulin dependent protein kinase (CaM kinase II). In general, tyrosine phosphorylation led to an increase in the activatory properties of calmodulin (CaM). For plasma membrane (PM) Ca2+-ATPase, PDE and CaM kinase II, the primary effect was a decrease in the concentration at which half maximal velocity was attained (Kact). In contrast, for calcineurin and NOS phosphorylation of CaM significantly increased the Vmax. For MLCK, however, neither Vmax nor Kact were affected by tyrosine phosphorylation. Direct determination by fluorescence techniques of the dissociation constants with synthetic peptides corresponding to the CaM-binding domain of the six analysed enzymes revealed that phosphorylation of Tyr99 on CaM generally increased its affinity for the peptides.  相似文献   
23.
24.
It is well documented that the MAPs, MAP2 and tau, play pivotal roles in neurite outgrowth. Several isoforms of MAP2 and tau are coexpressed in neurons, suggesting that the pattern of neurite outgrowth results from a functional equilibrium among these isoforms. In the present study, by coexpressing two of these MAPs at the same time in Sf9 cells, we demonstrated that tau-mediated process outgrowth is affected differently by MAP2b and MAP2c. MAP2b impairs tau ability to induce process outgrowth. Tau affects MAP2c capacity to induce the formation of multiple processes. There is evidence that actin microfilaments (F-actin) are involved in the elaboration of tau-mediated process outgrowth in Sf9 cells. We compared the effects of MAP2b and MAP2c with the effects of tau on F-actin distribution and stability in Sf9 cells. In MAP2b- and MAP2c-expressing cells with processes, F-actin was redistributed. However, in MAP2b-expressing cells without processes, the distribution of F-actin appears to be similar to the one in wild-type infected cells. Collectively, these results indicate that MAP2b could impair the ability of MAP2c and tau to redistribute F-actin in Sf9 cells, thereby decreasing their capacity to induce process formation. Furthermore, MAP2b and MAP2c patterns of process outgrowth were differentially modified by depolymerization of F-actin by cytochalasin D (CD). As previously reported for tau-expressing cells, the MAP2b-expressing cells developed a higher number of processes per cell and a higher number of cells presented processes in the presence of CD. However, the number of cells with multiple processes was lower in MAP2b-expressing cells than in tau-expressing cells treated with CD at 24 h postinfection. This suggests that MAP2b exerts an effect on F-actin stability at an earlier stage of infection than tau. MAP2c had also some stabilizing effects on F-actin at an early stage of infection, since the percentage of cells presenting one process was similar to the nontreated cells. Therefore, MAP2b seems to have less capacity than MAP2c to redistribute F-actin but, nonetheless, both of these MAP2 isoforms exert a stabilizing effect on F-actin at an early stage of infection. Finally, by modifying phosphorylation we showed that MAP2c capacity to induce multiple processes is related to protein phosphorylation in Sf9 cells. Therefore, the differential effect of MAP2c and MAP2b on process outgrowth seems also to depend on protein phosphorylation.  相似文献   
25.
The endoplasmic reticulum (ER) is a highly dynamic organelle. It is composed of four subcompartments including nuclear envelope (NE), rough ER (rER), smooth ER (sER) and transitional ER (tER). The subcompartments are interconnected, can fragment and dissociate and are able to reassemble again. They coordinate with cell function by way of protein regulators in the surrounding cytosol. The activity of the many associated molecular machines of the ER as well as the fluid nature of the limiting membrane of the ER contribute extensively to the dynamics of the ER. This review examines the properties of the ER that permit its isolation and purification and the physiological conditions that permit reconstitution both in vitro and in vivo in normal and in disease conditions.  相似文献   
26.
Red blood cell lysis is a common symptom following severe or prolonged oxidative stress. Oxidative processes occur commonly in sickle cells, probably mediated through denatured hemoglobin and the accumulation of ferric hemes in the membranes. Calmodulin-stimulated (Ca2+ + Mg2+)-ATPase from sickle red cell membranes is partially inactivated (Leclerc et al. (1987) Biochim. Biophys. Acta 897, 33-40). In this study (Ca2+ + Mg2+)-ATPase activity from normal adult erythrocyte membranes was measured in the presence of hemin. We report a time- and concentration-dependent inhibition of the activity of the enzyme by hemin due to a decrease in the maximum velocity. Only a mild inhibitory effect was observed in the presence of iron-free protoporphyrin IX, indicating the catalytic influence of the iron. Experiments carried out with hemin (ferric iron) liganded with imidazole or with reduced protoheme (ferrous iron) liganded with carbon monoxide, demonstrated that the inhibition requires that hemin be capable of binding additional ligands. The inhibition was not influenced by the absence of oxygen but was prevented by addition of bovine serum albumin. Addition of butylated hydroxytoluene, a protective agent of lipid peroxidation, failed to prevent the inhibition of calmodulin-stimulated (Ca2+ + Mg2+)-ATPase. As dithiothreitol partially restores the enzyme activity, we postulated that hemin interacts with the thiol groups of the enzyme.  相似文献   
27.
Between June 1984 and December 1986, 35 patients with acute myocardial infarction received streptokinase intravenously within 3 hours after the beginning of chest pain and underwent percutaneous transluminal coronary angioplasty (PTCA) either immediately (in 2 cases) or 1 to 19 (mean 4.4) days later (in 33). The rate of successful PTCA was 89%. Reocclusion occurred in one patient. The mean percentage of stenosis decreased from 86% to 11%. The mean trans-stenotic gradient was reduced from 41 to 11 mm Hg. The results suggest that in patients whose condition is stable, PTCA performed a few days after thrombolysis is a valuable alternative to more aggressive treatment with immediate PTCA.  相似文献   
28.
In many cancer cells the alteration of glycosylation processes leads to the expression of cryptic carbohydrate moieties, which make them good targets for immune intervention. Identification of cancer-associated glycotopes as well as progress in chemical synthesis have opened up the way for the development of fully synthetic immunogens that can induce anti-saccharide immune responses. Here, we synthesized a dendrimeric multiple antigenic glycopeptide (MAG) containing the Tn Ag O:-linked to a CD4(+) T cell epitope. This MAG is based on three consecutive Tn moieties (tri-Tn) corresponding to the glycotope recognized by an mAb (MLS 128) produced against the LS180 colon carcinoma cell line. The Abs induced by this MAG recognized murine and human tumor cell lines expressing the Tn Ag. Prophylactic vaccination using MAG provided protection of mice against tumor challenge. When used in active specific immunotherapy, the MAG carrying the tri-Tn glycotope was much more efficient than the mono-Tn analogue in promoting the survival of tumor-bearing mice. Furthermore, in active specific immunotherapy, a linear glycopeptide carrying two copies of the tri-Tn glycotope was shown to be poorly efficient compared with the dendrimeric MAG. Therefore, both the clustering of carbohydrate Ags and the way they are displayed seem to be important parameters for stimulating efficient anti-saccharide immune responses.  相似文献   
29.
The diversity of Archaea in anaerobic digesters was characterized by strand conformation polymorphism (SSCP) analysis and the sequencing of 16S rDNA genes. The 44 digesters sampled, located in eight different countries, treated effluents from agriculture, the food processing and petro-chemical industries, pulp and paper plant, breweries, slaughterhouses and municipal waste. All the existing processes were represented among the samples (fixed-film, fluidized bed, stirred-tank, UASB, sequential batch reactor, lagoon). Single strand conformation polymorphism analysis targeting the V3 region of 16S rDNA revealed between four to six distinct archaeal peaks per digester. The diversity of dominant Archaea in the 44 digesters was estimated as 23 different 16S rDNA sequences. Cloning of archaeal 16S rRNA genes from 11 distinct total genomic DNA, screening of clones by SSCP and the sequencing of 170 of them made it possible to characterize these SSCP peaks. All the sequences retrieved were members of the Euryarchaeaota subdomain. Furthermore, most of the sequences retrieved were very close to already known and cultivated strains or to environmental clones. The most frequent archaeal sequences were close to Methanosaeta concilii and to a 16S rDNA clone vadinDC06 located in the Methanobacterium clade (84% and 73% of digesters respectively). The other sequences were members of the Methanobacteriales and the Methanomicrobiales families. Only one sequence was far from any sequence of the database and it could be grouped with several sequences of environmental clones. Each digester harboured between two to nine archaeal sequences with only one of them corresponding to a putative acetate-utilizing species. Furthermore, the process in the digesters appeared to play a part in the distribution of archaeal diversity.  相似文献   
30.
Changes in 5'-AMP-activated protein kinase (AMPK) activity have recently been implicated in the control of insulin secretion by glucose (da Silva Xavier, G., Leclerc, I., Varadi, A., Tsuboi, T., Moule, S. K., and Rutter, G. A. (2003) Biochem. J. 371, 761-774). Here, we examine the possibility that activation of AMPK may regulate distal steps in insulin secretion, including vesicle movement and fusion with the plasma membrane. Vesicle dynamics were imaged in single pancreatic MIN6 beta-cells expressing lumen-targeted pH-insensitive yellow fluorescent protein, neuropeptide Y.Venus, or monomeric red fluorescent protein by total internal reflection fluorescence and Nipkow disc confocal microscopy. Overexpression of a truncated, constitutively active form of AMPK (AMPKalpha1, 1-312, T172D; AMPK CA), inhibited glucose-stimulated (30 versus 3.0 mM) vesicle movements, and decreased the number of vesicles docked or fusing at the plasma membrane, while having no effect on the kinetics of individual secretory events. Expression of the activated form of AMPK also prevented dispersal of the cortical actin network at high glucose concentrations. Monitored in permeabilized cells, where the effects of AMPK CA on glucose metabolism and ATP synthesis were bypassed, AMPK CA inhibited Ca2+ and ATP-induced insulin secretion, and decreased ATP-dependent vesicle movements. These findings suggest that components of the vesicle transport network, including vesicle-associated motor proteins, may be targets of AMPK in beta-cells, dephosphorylation of which is required for vesicle mobilization at elevated glucose concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号