首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   10篇
  2019年   1篇
  2014年   1篇
  2013年   2篇
  2009年   1篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有21条查询结果,搜索用时 140 毫秒
11.
A chronic demyelinating disease results from murine infection with the neurotropic strain JHM of mouse hepatitis virus (MHV-JHM). Demyelination is largely immune mediated. In this study, the individual roles of CD4 and CD8 T cells in MHV-induced demyelination were investigated using recombination-activating gene 1-/- (RAG1-/-) mice infected with an attenuated strain of MHV-JHM. These animals develop demyelination only after adoptive transfer of splenocytes from mice previously immunized to MHV. In this study, we show that, following adoptive transfer, virus-specific CD4 and CD8 T cells rapidly infiltrate the CNS of MHV-JHM-infected RAG1-/- mice. Adoptive transfer of CD4 T cell-enriched donors resulted in more severe clinical disease accompanied by less demyelination than was detected in the recipients of undepleted cells. Macrophage infiltration into the gray matter of CD4 T cell-enriched recipients was greater than that observed in mice receiving undepleted splenocytes. In contrast, CD8 T cell-enriched recipients developed delayed disease with extensive demyelination of the spinal cord. MHV-JHM-infected RAG1-/- mice receiving donors depleted of both CD4 and CD8 T cells did not develop demyelination. These results demonstrate that the development of demyelination following MHV infection may be initiated by either CD4 or CD8 T cells. Furthermore, they show that CD4 T cells contribute more prominently than CD8 T cells to the severity of clinical disease, and that this correlates with increased macrophage infiltration into the gray matter.  相似文献   
12.
Severe acute respiratory syndrome coronavirus encodes several accessory proteins of unknown function. We previously showed that one such protein, encoded by ORF6, enhanced the growth of mouse hepatitis virus in tissue culture cells and in mice. Protein 6 consists of an N-terminal hydrophobic peptide and a C-terminal region containing intracellular protein sorting motifs. Herein, we show that mutation of the hydrophobic region but not the sorting motifs affected the ability of protein 6 to enhance virus growth. Collectively, these results support the notion that the 6 protein interacts with membrane-bound viral replication or assembly machinery to directly enhance virus replication and virulence in animals.  相似文献   
13.
Efavirenz (EFV) is among the most commonly used antiretroviral drugs globally, causes neurological symptoms that interfere with adherence and reduce tolerability, and may have central nervous system (CNS) effects that contribute in part to HIV associated neurocognitive disorders (HAND) in patients on combination antiretroviral therapy (cART). Thus we evaluated a commonly used EFV containing regimen: EFV/zidovudine (AZT)/lamivudine (3TC) in murine N2a cells transfected with the human “Swedish” mutant form of amyloid precursor protein (SweAPP N2a cells) to assess for promotion of amyloid-beta (Aβ) production. Treatment with EFV or the EFV containing regimen generated significantly increased soluble amyloid beta (Aβ), and promoted increased β-secretase-1 (BACE-1) expression while 3TC, AZT, or, vehicle control did not significantly alter these endpoints. Further, EFV or the EFV containing regimen promoted significantly more mitochondrial stress in SweAPP N2a cells as compared to 3TC, AZT, or vehicle control. We next tested the EFV containing regimen in Aβ - producing Tg2576 mice combined or singly using clinically relevant doses. EFV or the EFV containing regimen promoted significantly more BACE-1 expression and soluble Aβ generation while 3TC, AZT, or vehicle control did not. Finally, microglial Aβ phagocytosis was significantly reduced by EFV or the EFV containing regimen but not by AZT, 3TC, or vehicle control alone. These data suggest the majority of Aβ promoting effects of this cART regimen are dependent upon EFV as it promotes both increased production, and decreased clearance of Aβ peptide.  相似文献   
14.
Intranasal mouse hepatitis virus type 1 (MHV-1) infection of mice induces lung pathology similar to that observed in severe acute respiratory syndrome (SARS) patients. However, the severity of MHV-1-induced pulmonary disease varies among mouse strains, and it has been suggested that differences in the host immune response might account for this variation. It has also been suggested that immunopathology may represent an important clinical feature of SARS. Little is known about the host immune response to MHV-1 and how it might contribute to some of the pathological changes detected in infected mice. In this study we show that an intact type I interferon system and the adaptive immune responses are required for controlling MHV-1 replication and preventing morbidity and mortality in resistant C57BL/6J mice after infection. The NK cell response also helps minimize the severity of illness following MHV-1 infection of C57BL/6J mice. In A/J and C3H/HeJ mice, which are highly susceptible to MHV-1-induced disease, we demonstrate that both CD4 and CD8 T cells contribute to morbidity during primary infection, and memory responses can enhance morbidity and mortality during subsequent reexposure to MHV-1. However, morbidity in A/J and C3H/HeJ mice can be minimized by treating them with immune serum prior to MHV-1 infection. Overall, our findings highlight the role of the host immune response in contributing to the pathogenesis of coronavirus-induced respiratory disease.Severe acute respiratory syndrome (SARS) is caused by a zoonotic coronaviral infection that reached epidemic proportions beginning in late 2002 (37, 52, 55, 76, 84, 86). The etiologic agent, SARS-coronavirus (CoV), is a novel group 2 CoV that emerged in the human population exposed to infected animals that were present in wet markets in various provinces of southern China (16, 22, 35, 45, 57, 61). Although the outbreak was quickly contained by the application of aggressive public health measures, it highlighted the deadly potential of this novel pathogen as more than 8,000 people in more than 25 countries were affected, and almost 800 infected individuals died (37, 76, 84, 86). Although there have not been additional outbreaks of this disease in the general population since 2003, due to the continued presence of related viruses in bats and other animals and to cultural practices prevalent in the local population in southern China, the reemergence of this pathogen in the human population may occur in the future (40).Currently, there are no rigorously tested efficacious prophylactic or therapeutic agents targeting this pathogen. Given the lethal potential of this virus, it is imperative to develop specific antiviral therapies that can be rapidly and universally applied. One of the serious drawbacks in the field is the paucity of appropriate animal models that faithfully reproduce the clinical features of SARS (52, 60). Although a mouse-adapted strain of this virus is available, studies with this strain need to be performed in biosafety level 3 facilities (48, 59). Logistical issues associated with such requirements hamper the rapidity and ease with which one can perform a comprehensive and detailed systemic examination of the dynamics of host-pathogen interactions. Recently, it was reported that intranasal infection of certain strains of mice with a related group 2 respiratory CoV, mouse hepatitis virus type 1 (MHV-1), induced pulmonary disease that was very similar to that observed in human subjects infected with SARS-CoV (11). In addition to the phylogenetic proximity of MHV-1 and SARS-CoV, they also share similarities in genome organization and in mechanisms of replication (63, 68). Hence, it is likely that the pathophysiology observed in MHV-1-infected mice mimics important pathological features associated with SARS-CoV infection in humans. A dysregulated immune response characterized by aberrant cytokine production is postulated to contribute to clinical disease in patients with SARS (8, 26, 55, 58, 72, 75, 82, 83). MHV-1 infection of susceptible strains of mice is also associated with an altered cytokine profile, and published reports suggest that the host immune response to the virus is an important contributor to the pathology observed in susceptible strains of mice (11). Examination of the immune response to a pathogen is critical for the purpose of designing rational and effective vaccination approaches. In addition, it also helps identify potentially deleterious effects of the immune response that can subsequently be manipulated to the advantage of the host, thereby maximizing recovery and minimizing morbidity.In the present study we have carried out a comprehensive analysis of the immune response to MHV-1 following intranasal infection of both resistant and susceptible strains of inbred mice. Our observations in alpha/beta interferon (type I IFN) receptor-knockout (IFN-αβR-KO) mice and NK cell-depleted mice shed light on the protective role of these components of the innate immune response in resistant C57BL/6J (B6) mice. And our examination of the adaptive immune responses to MHV-1 shows that they function as a double-edged sword, mediating protection in resistant strains and contributing to pathology in susceptible strains of mice.  相似文献   
15.
Multiple sclerosis, a chronic inflammatory disease of the CNS, is characterized by immune-mediated demyelination. Many patients have a remitting-relapsing course of disease with exacerbations often following unrelated microbial illnesses. The relationship between the two events remains obscure. One possibility is that T cells specific for the inciting microbial pathogen are able to effect demyelination at a site of ongoing inflammation within the CNS. This possibility was examined in mice infected with mouse hepatitis virus, a well-described model of virus-induced demyelination. Using transgenic TCR/recombination activation gene 2(-/-) mice with only non-mouse hepatitis virus-specific T cells, we show that CD8 T cells are able to cause demyelination in the absence of cognate Ag in the CNS, but only if specifically activated. These findings demonstrate a novel mechanism for immune-mediated neuropathology and show that activated CD8 T cells may serve as important mediators of bystander demyelination during times of infection, including in patients with multiple sclerosis.  相似文献   
16.
C57BL/6 mice infected with mouse hepatitis virus strain JHM (MHV-JHM) develop a chronic demyelinating encephalomyelitis several weeks after inoculation. Previously, we showed that mutations in the immunodominant CD8 T-cell epitope (S-510-518) could be detected in nearly all samples of RNA and virus isolated from these mice. These mutations abrogated recognition by T cells harvested from the central nervous systems of infected mice in direct ex vivo cytotoxicity assays. These results suggested that cytotoxic T-lymphocyte (CTL) escape mutants contributed to virus amplification and the development of clinical disease in mice infected with wild-type virus. In the present study, the importance of these mutations was further evaluated by infecting naive mice with MHV-JHM variants isolated from infected mice and in which epitope S-510-518 was mutated. Compared to mice infected with wild-type virus, variant virus-infected animals showed higher mortality and morbidity manifested by decreased weight gain and neurological signs. Although a delay in the kinetics of virus clearance has been demonstrated in previous studies of CTL escape mutants, this is the first illustration of significant changes in clinical disease resulting from infection with viruses able to evade the CD8 T-cell immune response.  相似文献   
17.
The severe acute respiratory syndrome (SARS), caused by a novel coronavirus (SARS-CoV), resulted in substantial morbidity, mortality, and economic losses during the 2003 epidemic. While SARS-CoV infection has not recurred to a significant extent since 2003, it still remains a potential threat. Understanding of SARS and development of therapeutic approaches have been hampered by the absence of an animal model that mimics the human disease and is reproducible. Here we show that transgenic mice that express the SARS-CoV receptor (human angiotensin-converting enzyme 2 [hACE2]) in airway and other epithelia develop a rapidly lethal infection after intranasal inoculation with a human strain of the virus. Infection begins in airway epithelia, with subsequent alveolar involvement and extrapulmonary virus spread to the brain. Infection results in macrophage and lymphocyte infiltration in the lungs and upregulation of proinflammatory cytokines and chemokines in both the lung and the brain. This model of lethal infection with SARS-CoV should be useful for studies of pathogenesis and for the development of antiviral therapies.  相似文献   
18.
L Pewe  S Xue    S Perlman 《Journal of virology》1997,71(10):7640-7647
Under certain conditions, C57BL/6 mice persistently infected with mouse hepatitis virus strain JHM (MHV-JHM) develop clinical disease and histological evidence of demyelination several weeks after inoculation with virus. In a previous report, we showed that mutations in the RNA encoding an immunodominant CD8 T-cell epitope within the surface glycoprotein (epitope S-510-518) were present in all persistently infected animals and that these mutations abrogated recognition by virus-specific cytotoxic T cells (CTLs) in direct ex vivo cytotoxicity assays. To obtain further evidence that these mutations were necessary for the development of clinical disease, the temporal course of their appearance was determined. Mutations in the epitope were identified by 10 to 12 days after inoculation, and in some mice, virus containing mutated epitope was the dominant species detected by 15 days. In addition, most mice that remain asymptomatic at 80 days after inoculation, a time after which clinical disease almost never develops, were infected with only wild-type virus. Finally, analysis of virus isolated from mice with severe combined immunodeficiency (SCID) revealed the presence only of wild-type epitope S-510-518. These results, by showing that mutations are not selected in SCID mice and occur at early times after inoculation in C57BL/6 mice, support the view that they result from immune pressure and contribute to virus persistence and demyelination in mice infected persistently with MHV-JHM.  相似文献   
19.
Studies of patients with severe acute respiratory syndrome (SARS) demonstrate that the respiratory tract is a major site of SARS-coronavirus (CoV) infection and disease morbidity. We studied host-pathogen interactions using native lung tissue and a model of well-differentiated cultures of primary human airway epithelia. Angiotensin converting enzyme 2 (ACE2), the receptor for both the SARS-CoV and the related human respiratory coronavirus NL63, was expressed in human airway epithelia as well as lung parenchyma. As assessed by immunofluorescence staining and membrane biotinylation, ACE2 protein was more abundantly expressed on the apical than the basolateral surface of polarized airway epithelia. Interestingly, ACE2 expression positively correlated with the differentiation state of epithelia. Undifferentiated cells expressing little ACE2 were poorly infected with SARS-CoV, while well-differentiated cells expressing more ACE2 were readily infected. Expression of ACE2 in poorly differentiated epithelia facilitated SARS spike (S) protein-pseudotyped virus entry. Consistent with the expression pattern of ACE2, the entry of SARS-CoV or a lentivirus pseudotyped with SARS-CoV S protein in differentiated epithelia was more efficient when applied to the apical surface. Furthermore, SARS-CoV replicated in polarized epithelia and preferentially exited via the apical surface. The results indicate that infection of human airway epithelia by SARS coronavirus correlates with the state of cell differentiation and ACE2 expression and localization. These findings have implications for understanding disease pathogenesis associated with SARS-CoV and NL63 infections.  相似文献   
20.
Respiratory virus infections in the elderly result in increased rates of hospitalization and death. Respiratory syncytial virus (RSV) is a leading cause of severe virus-induced respiratory disease in individuals over the age of 65. CD8 T cells play a critical role in mediating RSV clearance. While it is clear that T cell immunity declines with age, it is not clear to what extent the CD8 T cell response to RSV is altered. Using aged BALB/c mice, we demonstrated that RSV-specific CD8 T cell responses were significantly reduced in the lungs of aged mice at the peak of the T cell response and that this decrease correlated with delayed viral clearance. Despite a decrease in the overall numbers of RSV-specific CD8 T cells during acute infection, their capacity to produce effector cytokines was not impaired. Following viral clearance, the RSV-specific memory CD8 T cells were similar in total number and phenotype in young and aged mice. Furthermore, following infection with a heterologous pathogen expressing an RSV epitope, RSV-specific memory CD8 T cells exhibited similar activation and ability to provide early control of the infection in young and aged mice. These data demonstrate a decrease in the capacity of aged mice to induce a high-magnitude acute CD8 T cell response, leading to prolonged viral replication, which may contribute to the increased disease severity of RSV infection observed for aged individuals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号