全文获取类型
收费全文 | 9855篇 |
免费 | 873篇 |
国内免费 | 839篇 |
专业分类
11567篇 |
出版年
2024年 | 26篇 |
2023年 | 155篇 |
2022年 | 331篇 |
2021年 | 571篇 |
2020年 | 400篇 |
2019年 | 435篇 |
2018年 | 422篇 |
2017年 | 307篇 |
2016年 | 430篇 |
2015年 | 608篇 |
2014年 | 781篇 |
2013年 | 756篇 |
2012年 | 923篇 |
2011年 | 778篇 |
2010年 | 540篇 |
2009年 | 423篇 |
2008年 | 460篇 |
2007年 | 493篇 |
2006年 | 408篇 |
2005年 | 340篇 |
2004年 | 302篇 |
2003年 | 233篇 |
2002年 | 202篇 |
2001年 | 176篇 |
2000年 | 156篇 |
1999年 | 153篇 |
1998年 | 71篇 |
1997年 | 69篇 |
1996年 | 72篇 |
1995年 | 52篇 |
1994年 | 63篇 |
1993年 | 51篇 |
1992年 | 75篇 |
1991年 | 59篇 |
1990年 | 40篇 |
1989年 | 51篇 |
1988年 | 29篇 |
1987年 | 34篇 |
1986年 | 24篇 |
1985年 | 25篇 |
1984年 | 8篇 |
1983年 | 11篇 |
1982年 | 3篇 |
1980年 | 5篇 |
1979年 | 6篇 |
1974年 | 1篇 |
1973年 | 3篇 |
1970年 | 1篇 |
1969年 | 1篇 |
1964年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
61.
Yiwen Liu Jianfang Gao Min Xu Qianqian Zhou Zhongxiao Zhang Jiaxin Ye Rui Li 《Journal of cellular and molecular medicine》2022,26(13):3616
Congenital heart disease (CHD) is the most common birth defect, affecting approximately 1% of live births. Genetic and environmental factors are leading factors to CHD, but the mechanism of CHD pathogenesis remains unclear. Circular RNAs (circRNAs) are kinds of endogenous non‐coding RNAs (ncRNAs) involved in a variety of physiological and pathological processes, especially in heart diseases. In this study, three significant differently expressed circRNA between maternal embryonic day (E) E13 and E17 was found by microarray assay. Among them, the content of circ‐RCCD increases with the development of heart and was enriched in primary cardiomyocytes of different species, which arouses our attention. Functional experiments revealed that inhibition of circ‐RCCD dramatically suppressed the formation of beating cell clusters, the fluorescence intensity of cardiac differentiation marker MF20, and the expression of the myocardial‐specific markers CTnT, Mef2c, and GATA4. Next, we found that circ‐RCCD was involved in cardiomyocyte differentiation through negative regulation of MyD88 expression. Further experiments proved that circ‐RCCD inhibited MyD88 levels by recruiting YY1 to the promoter of MyD88; circ‐RCCD inhibited nuclear translocation of YY1. These results reported that circ‐RCCD promoted cardiomyocyte differentiation by recruiting YY1 to the promoter of MyD88. And, this study provided a potential role and molecular mechanism of circ‐RCCD as a target for the treatment of CHD. 相似文献
62.
63.
Michal Hammel Yaping Yu Brandi L. Mahaney Brandon Cai Ruiqiong Ye Barry M. Phipps Robert P. Rambo Greg L. Hura Martin Pelikan Sairei So Ramin M. Abolfath David J. Chen Susan P. Lees-Miller John A. Tainer 《The Journal of biological chemistry》2010,285(2):1414-1423
DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray scattering, reveal major structural reorganizations that choreograph NHEJ initiation. The Ku80 C-terminal region forms a flexible arm that extends from the DNA-binding core to recruit and retain DNA-PKcs at DSBs. Furthermore, Ku- and DNA-promoted assembly of a DNA-PKcs dimer facilitates trans-autophosphorylation at the DSB. The resulting site-specific autophosphorylation induces a large conformational change that opens DNA-PKcs and promotes its release from DNA ends. These results show how protein and DNA interactions initiate large Ku and DNA-PKcs rearrangements to control DNA-PK biological functions as a macromolecular machine orchestrating assembly and disassembly of the initial NHEJ complex on DNA. 相似文献
64.
65.
Hydrogen sulfide (H2S) is an important gaseous molecule in various plant developmental processes and plant stress responses. In this study, the transgenic Arabidopsis thaliana plants with modulated exp... 相似文献
66.
Jang Hye Jin Choi Ji Yeon Kim Kangjoon Yong Seung Hyun Kim Yeon Wook Kim Song Yee Kim Eun Young Jung Ji Ye Kang Young Ae Park Moo Suk Kim Young Sam Cho Young-Jae Lee Sang Hoon 《Respiratory research》2021,22(1):1-9
IL-35 subunit EBI3 is up-regulated in pulmonary fibrosis tissues. In this study, we investigated the pathological role of EBI3 in pulmonary fibrosis and dissected the underlying molecular mechanism. Bleomycin-induced pulmonary fibrosis mouse model was established, and samples were performed gene expression analyses through RNAseq, qRT-PCR and Western blot. Wild type and EBI3 knockout mice were exposed to bleomycin to investigate the pathological role of IL-35, via lung function and gene expression analyses. Primary lung epithelial cells were used to dissect the regulatory mechanism of EBI3 on STAT1/STAT4 and STAT3. IL-35 was elevated in both human and mouse with pulmonary fibrosis. EBI3 knockdown aggravated the symptoms of pulmonary fibrosis in mice. EBI3 deficiency enhanced the expressions of fibrotic and extracellular matrix-associated genes. Mechanistically, IL-35 activated STAT1 and STAT4, which in turn suppressed DNA enrichment of STAT3 and inhibited the fibrosis process. IL-35 might be one of the potential therapeutic targets for bleomycin-induced pulmonary fibrosis. 相似文献
67.
Salmonella enterica serotype Choleraesuis (S. Choleraesuis) usually causes systemic infections in man and needs antimicrobial treatment. Multidrug resistance (MDR) in S. Choleraesuis is thus a great concern in the treatment of systemic non-typhoid salmonellosis. A large plasmid, pSC138, was identified in 2002 from a S. Choleraesuis strain SC-B67 that was resistant to all antimicrobial agents commonly used to treat salmonellosis, including ciprofloxacin and ceftriaxone. Complete DNA sequence of the plasmid had been determined previously (Chiu et al., 2005). In the present study, the sequence of pSC138 was reannotated in detail and compared with several newly sequenced plasmids. Some transposable elements and drug resistance genes were further delineated. Plasmid pSC138 was 138,742 bp in length and consisted of 177 open reading frames (ORFs). While 134 of the ORFs displayed significant identity levels to other plasmid and prokaryotic sequences, the remaining 43 ORFs have not been previously reported. Mobile elements, including two integrons, seven insertion sequences and eight transposons, and a truncated prophage together encompass at least 66,781 bp (48.1%) of the plasmid genome. The sequence of pSC138 consists of three major regions: a large composite transposable region Tn6088 with a Tn21-like backbone inserted by a variety of integrons or transposable elements; a transfer/maintenance region that contains a conserved ISEcp1-mediated transposon-like element Tn6092, carrying an AmpC gene, bla(CMY-2), that confers the ceftriaxone resistance; and a Rep_3 type of replication region. Another seven bacteremic strains of S. Choleraesuis that expressed the same MDR phenotype were identified during 2003-2008. The same Rep_3 type replicase and the bla(CMY-2)-containing, ISEcp1-mediated transposon-like element were found in the MDR isolates, suggesting a successful preservation and dissemination of the MDR plasmid. Comparison of pSC138 with other recently published plasmids revealed a high identity level between partial sequences of pSC138 and plasmids of the same or different incompatibility groups. The large MDR region found in pSC138 may provide a niche for the future evolution of the plasmid by acquisition of relevant resistance genes through the panoply of mobile elements and illegitimate recombination events. 相似文献
68.
Kristen M. Johansen Jrgen Johansen Kwang-Hyun Baek Ye Jin 《Journal of cellular biochemistry》1996,63(3):268-279
Little is known about what determines the nuclear matrix or how its reorganization is regulated during mitosis. In this study we report on a monoclonal antibody, mAb2A, which identifies a novel nuclear structure in Drosophila embryos which forms a diffuse meshwork at interphase but which undergoes a striking reorganization into a spindle-like structure during pro- and metaphase. Double labelings with α-tubulin and mAb2A antibodies demonstrate that the microtubules of the mitotic apparatus co-localize with this mAb2A labeled structure during metaphase, suggesting it may serve a role in microtubule spindle assembly and/or function during nuclear division. That the mAb2A-labeled nuclear structure is essential for cell division and/or maintenance of nuclear integrity was directly demonstrated by microinjection of mAb2A into early syncytial embryos which resulted in a disintegration of nuclear morphology and perturbation of mitosis. © 1996 Wiley-Liss, Inc. 相似文献
69.
Qi Ye Ming Yan Lin Xu Hou Cao Zhenjiang Li Yong Chen Shuya Li Hanjie Ying 《Biotechnology letters》2009,31(4):537-542
An NADPH-dependent carbonyl reductase (PsCR) gene from Pichia stipitis was cloned. It contains an open reading frame of 849 bp encoding 283 amino acids whose sequence had less than 60% identity
to known reductases that produce ethyl (S)-4-chloro-3-hydroxybutanoates (S-CHBE). When expressed in Escherichia coli, the recombinant PsCR exhibited an activity of 27 U/mg using ethyl 4-chloro-3-oxobutanoate (COBE) as a substrate. Reduction
of COBE to (S)-CHBE by transformants in an aqueous mono-phase system for 18 h, gave a molar yield of 94% and an optical purity of the (S)-isomer of more than 99% enantiomeric excess. 相似文献
70.