首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   454篇
  免费   35篇
  489篇
  2022年   6篇
  2021年   16篇
  2020年   9篇
  2019年   8篇
  2018年   4篇
  2017年   8篇
  2016年   14篇
  2015年   21篇
  2014年   19篇
  2013年   30篇
  2012年   25篇
  2011年   16篇
  2010年   12篇
  2009年   18篇
  2008年   15篇
  2007年   16篇
  2006年   20篇
  2005年   13篇
  2004年   15篇
  2003年   8篇
  2002年   6篇
  2001年   10篇
  2000年   8篇
  1999年   8篇
  1998年   13篇
  1995年   4篇
  1992年   6篇
  1991年   4篇
  1990年   8篇
  1989年   14篇
  1988年   4篇
  1987年   8篇
  1986年   8篇
  1985年   9篇
  1984年   6篇
  1983年   7篇
  1982年   7篇
  1981年   6篇
  1980年   3篇
  1979年   6篇
  1978年   7篇
  1977年   4篇
  1976年   3篇
  1974年   3篇
  1973年   3篇
  1972年   4篇
  1970年   5篇
  1969年   3篇
  1948年   2篇
  1943年   2篇
排序方式: 共有489条查询结果,搜索用时 15 毫秒
61.
Despite the wide range of sequence diversity among chemokines, their tertiary structures are remarkably similar. Furthermore, many chemokines form dimers or higher order oligomers, but all characterized oligomeric structures are based primarily on two dimerization motifs represented by CC-chemokine or CXC-chemokine dimer interfaces. These observations raise the possibility that some chemokines could form unique hetero-oligomers using the same oligomerization motifs. Such interactions could modulate the overall signaling response of the receptors, thereby providing a general mechanism for regulating chemokine function. For some chemokines, homo-oligomerization has also been shown to be coupled to glycosaminoglycan (GAG)-binding. However, the effect of GAG binding on chemokine hetero-oligomerization has not yet been demonstrated. In this report, we characterized the heterodimerization of the CCR2 ligands MCP-1 (CCL2), MCP-2 (CCL8), MCP-3 (CCL7), MCP-4 (CCL13), and eotaxin (CCL11), as well as the effects of GAG binding, using electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. Strong heterodimerization was observed between CCL2 and CCL8 at the expense of homodimer formation. Using NMR, we showed that the heterodimer is predominant in solution and forms a specific CC chemokine-like dimer. By contrast, only moderate heterodimer formation was observed between CCL2.CCL13, CCL2.CCL11 and CCL8.CCL13, and no heterodimerization was observed when any other CCR2 ligand was added to CCL7. To investigate the effect of a highly sulfated GAG on the formation of heterodimers, each chemokine pair was mixed with the heparin pentasaccharide, Arixtra, and assayed by ESI-FTICR mass spectrometry. Although no CCL8.CCL11 heterodimer was observed in the absence of GAG, abundant ions corresponding to the ternary complex, CCL8.CCL11.Arixtra, were observed upon addition of Arixtra. Heterodimerization between CCL2 and CCL11 was also enhanced in the presence of Arixtra. In summary, these results indicate that some CCR2 ligands can form stable heterodimers in preference to homodimers and that these interactions, like those of homo-oligomers, can be influenced by some GAGs.  相似文献   
62.
Camelid single domain antibodies (sdAb) are known for their thermal stability and reversible refolding. We have characterized an unusually stable sdAb recognizing Staphylococcal enterotoxin B with one of the highest reported melting temperatures (Tm = 85°C). Unexpectedly, ~10?20% of the protein formed a dimer in solution. Three other cases where <20% of the sdAb dimerized have been reported; however, this is the first report of both the monomeric and dimeric X‐ray crystal structures. Concentration of the monomer did not lead to the formation of new dimer suggesting a stable conformationally distinct species in a fraction of the cytoplasmically expressed protein. Comparison of periplasmic and cytoplasmic expression showed that the dimer was associated with cytoplasmic expression. The disulfide bond was partially reduced in the WT protein purified from the cytoplasm and the protein irreversibly unfolded. Periplasmic expression produced monomeric protein with a fully formed disulfide bond and mostly reversible refolding. Crystallization of a disulfide‐bond free variant, C22A/C99V, purified from the periplasm yielded a structure of a monomeric form, while crystallization of C22A/C99V from the cytoplasm produced an asymmetric dimer. In the dimer, a significant conformational asymmetry was found in the loop residues of the edge β‐strands (S50‐Y60) containing the highly variable complementarity determining region, CDR2. Two dimeric assemblies were predicted from the crystal packing. Mutation of a residue at one of the interfaces, Y98A, disrupted the dimer in solution. The pleomorphic homodimer may yield insight into the stability of misfolded states and the importance of the conserved disulfide bond in preventing their formation. Proteins 2014; 82:3101–3116. © 2014 Wiley Periodicals, Inc.  相似文献   
63.
Metagenomic and metaproteomic analyses were utilized to determine the composition and function of complex air–water interface biofilms sampled from the hulls of two US Navy destroyers. Prokaryotic community analyses using PhyloChip-based 16S rDNA profiling revealed two significantly different and taxonomically rich biofilm communities (6,942 taxa) in which the majority of unique taxa were ascribed to members of the Gammaproteobacteria, Alphaproteobacteria and Clostridia. Although metagenomic sequencing indicated that both biofilms were dominated by prokaryotic sequence reads (> 91%) with the majority of the bacterial reads belonging to the Alphaproteobacteria, the Ship-1 metagenome harbored greater organismal and functional diversity and was comparatively enriched for sequences from Cyanobacteria, Bacteroidetes and macroscopic eukaryotes, whereas the Ship-2 metagenome was enriched for sequences from Proteobacteria and microscopic photosynthetic eukaryotes. Qualitative liquid chromatography-tandem mass spectrometry metaproteome analyses identified 678 unique proteins, revealed little overlap in species and protein composition between the ships and contrasted with the metagenomic data in that ~80% of classified and annotated proteins were of eukaryotic origin and dominated by members of the Bacillariophyta, Cnidaria, Chordata and Arthropoda (data deposited to the ProteomeXchange, identifier PXD000961). Within the shared metaproteome, quantitative 18O and iTRAQ analyses demonstrated a significantly greater abundance of structural proteins from macroscopic eukaryotes on Ship-1 and diatom photosynthesis proteins on Ship-2. Photosynthetic pigment composition and elemental analyses confirmed that both biofilms were dominated by phototrophic processes. These data begin to provide a better understanding of the complex organismal and biomolecular composition of marine biofilms while highlighting caveats in the interpretation of stand-alone environmental ‘-omics’ datasets.  相似文献   
64.
The history, origin, identity, chemistry and uses of Congo red are described. Originally patented in 1884, Congo red soon found applications in dyeing cotton, as a pH indicator for chemists and as a biological stain. Unlike the majority of the 19th century synthetic dyes, it still is available commercially.  相似文献   
65.
Intraluminal thrombus (ILT) is present in 75% of clinically-relevant abdominal aortic aneurysms (AAAs) yet, despite much research effort, its role in AAA biomechanics remains unclear. The aim of this work is to further evaluate the biomechanics of ILT and determine if different ILT morphologies have varying mechanical properties.  相似文献   
66.
Through the canonical LC3 interaction motif (LIR), [W/F/Y]‐X1‐X2‐[I/L/V], protein complexes are recruited to autophagosomes to perform their functions as either autophagy adaptors or receptors. How these adaptors/receptors selectively interact with either LC3 or GABARAP families remains unclear. Herein, we determine the range of selectivity of 30 known core LIR motifs towards individual LC3s and GABARAPs. From these, we define a I nteraction 相似文献   
67.
Chemokine receptor CXCR4 (also known as LESTR and fusin) has been shown to function as a coreceptor for T-cell-tropic strains of human immunodeficiency virus type 1 (HIV-1). We have developed a binding assay to show that HIV envelope (Env) can interact with CXCR4 independently of CD4 but that this binding is markedly enhanced by the previous interaction of Env with soluble CD4. We also show that nonglycosylated HIV-1SF-2 gp120 or sodium metaperiodate-treated oligomeric gp160 from HIV-1451 bound much more readily to CXCR4 than their counterparts with intact carbohydrate residues did.In the recent past, several members of the family of chemokine receptors have been identified as cofactors for human immunodeficiency virus type 1 (HIV-1) entry (1, 6, 8, 10). Specifically, CCR5 (as well as CCR3 and CCR2b in some instances) has been shown to mediate entry of viruses characterized as macrophage tropic or dual tropic (1, 58), while CXCR4 has been shown to mediate entry of T-cell-tropic or dual-tropic strains (7, 10). While several ligands have been found for CCR5, CXC chemokine stromal derivative factor (SDF1) remains the only known ligand for CXCR4 (4, 24). Coimmunoprecipitation studies have shown that HIV-1 Env from T-cell-tropic strains forms a complex with CD4 and CXCR4 (18), but the nature of the binding events leading to the formation of this complex and the possibility of a direct interaction between HIV Env and CXCR4 remained speculative. Data from Hesselgesser et al. (15) have more recently shown that gp120 from the T-cell-tropic strains IIIB or BRU was able to compete with SDF1 for binding to CXCR4 in hNT cells (a neuronal CD4-negative cell line), indicating the possibility of a direct interaction between CXCR4 and gp120, but no information was presented on the relevance of the interaction with CD4. Other data have shown that gp120 from macrophage-tropic strains of HIV might be able to bind directly to CCR5 and that the affinity for binding between the two molecules can be increased significantly by the presence of soluble CD4 (sCD4) (34), although this effect could not be reproduced by a different group (32).We have performed the following studies to determine if HIV Env binds to CXCR4 independently of CD4 and, if so, what would be the effect of previous binding of HIV Env to sCD4.

CD4-independent binding of HIV Env to CXCR4.

The phenotypes of the T-cell lines CEM-SS and Jurkat 25 (J25) were evaluated with respect to surface expression of both CD4 and CXCR4. J25 clone 22F6 cells (3, 21) were grown in complete medium (RPMI 1640, 2% penicillin-streptomycin, 2% l-glutamine; BioWhittaker, Walkersville, Md.) containing heat-inactivated 10% fetal calf serum at 37°C in a 5% CO2 atmosphere. CEM-SS is a T-cell line that was obtained from the AIDS Research and Reference Reagent Program and maintained in complete medium. CEM-SS cells were derived from a human lymphoblastoid tumor (22, 23). Commercial monoclonal antibody (MAb) to CD4 (mouse immunoglobulin G2a [IgG2a], clone S3.5), fluorescein isothiocyanate (FITC) labeled, and the necessary isotypic controls were obtained from Caltag Laboratories (San Francisco, Calif.). Mouse MAb 12G5 against CXCR4 was raised in BALB/c mice and has been described previously (9). Goat anti-mouse IgG–FITC was purchased from Becton Dickinson (San Jose, Calif.). Flow cytometric analysis was performed on a Becton Dickinson FACScan cytometer equipped with a 15-mW argon laser emitting at 488 nm. Dead cells were detected on the basis of their scatter and eliminated from the analysis. Live cells (10,000) were analyzed for each marker. CXCR4 surface expression was determined by washing the cells taken in logarithmic growth phase with phosphate-buffered saline (PBS) containing 1% horse serum and incubating them with 10 μl of 12G5 antibody/100 μl (0.16 mg/ml) at 4°C for 30 min. The cells were then washed again in PBS, and a secondary goat anti-mouse IgG–FITC (Becton Dickinson) was incubated with the cells for another 30 min at 4°C. Finally, the cells were washed with PBS and fixed with 2% paraformaldehyde. As a control, equal amounts of mouse IgG2a (the same isotype as 12G5) were used. Both cell lines expressed significant levels of CXCR4 on their surfaces (Fig. (Fig.1),1), but only CEM-SS had measurable levels of surface CD4. This characteristic of the phenotype of J25 cells, with respect to CD4 expression, has been reported before (3). To assess binding of HIV Env to CXCR4, the following binding assay was developed. Oligomeric gp160 (ogp160) was purified from cell cultures (obtained from T. C. Van Cott (Henry M. Jackson Foundation, Rockville, Md.) infected with HIV451 (17). The cells were washed once with PBS and then incubated with ogp160 for 1 h at 37°C in RPMI medium. The cells were washed again in PBS and incubated with 10 μg of human MAb 1331A [IgG3(λ)]/ml, which is specific for the C terminus of gp120 (i.e., amino acids 510 to 516 of HIVLAI), or with a human MAb against p24 (MAb 71-31) as a control (12) for 30 min at 4°C. The secondary antibody was a goat anti-human IgG phycoerythrin labeled (Caltag). The cells were fixed in 2% paraformaldehyde, and the fluorescence intensity was determined by flow cytometry. Background was obtained by adding MAb 1331 and goat anti-human IgG, phycoerythrin labeled, to the cells in the absence of ogp160. The results of the binding assay with ogp160 from HIV451 and both cell lines are shown in Fig. Fig.2A.2A. By using the high-affinity human MAb 1331A against the C-terminal region of gp120, our assay was able to detect significant binding of the ogp160 molecule to the surfaces of both cell lines even at concentrations of only 88 nM. The very high relative affinity of MAb 1331A for the gp120 molecule appears to be critical to demonstrate this interaction, as other antibodies with lower relative affinities for gp120 were incapable of detecting this low-level binding (data not shown). The binding of ogp160 to the CD4-expressing CEM-SS cells was several orders of magnitude higher than that to the J25 cells. To prove the specificity of the binding assay for CXCR4, a synthetic form of SDF1 was produced and tested for its ability to block infection by the HIV-1 strain NL4-3 in HeLa CD4-positive long terminal repeat (LTR)-LacZ cells. These data have been published elsewhere (2). SDF1 synthesis and composition have been described previously (24). Exposure of J25 cells to SDF1 was shown to produce a dose-dependent blockage of the binding of ogp160 to the surfaces of the J25 cells (Fig. (Fig.2B),2B), indicating the specific nature of the assay. Open in a separate windowFIG. 1Phenotype analysis of CEM-SS and J25 cell lines. Thin solid line, background; thick solid line, CD4; dashed line, CXCR4.Open in a separate windowFIG. 2(A) Binding of ogp160 from HIV451 to the surfaces of CEM-SS or J25 cells. Fluorescence intensity is expressed on a logarithmic scale on the x axis, with each line representing one-half log. Concentrations of ogp160 are shown at the right of each graph. The experiments were done in duplicate to ensure consistency of results. (B) Effect of RANTES (250 nM) or increasing amounts of SDF1 (up to 250 nM) on binding of ogp160 (355 nM) to J25 cells. The results are expressed as mean channel fluorescence. Experiments were repeated twice to ensure consistency of results.To further test the fact that HIV Env binding to CXCR4 could occur independently of CD4, and to evaluate the effect of prior binding of Env to sCD4, the following experiments were performed. We preexposed CEM-SS as well as J25 cells to either the anti-CD4 antibody Leu3a (Becton Dickinson), which blocks the CD4 binding domain of HIV Env, or OKT4 (Ortho Diagnostics, Costa Mesa, Calif.), which does not block binding of HIV Env to CD4. The cells were then tested for their ability to bind ogp160 to their surfaces. As shown in Fig. Fig.3,3, OKT4 had no significant effect on the binding of ogp160 to either CEM-SS or J25 cells while Leu3a readily inhibited binding of ogp160 to CEM-SS cells but had no such effect on J25 cells. Furthermore, when ogp160 was allowed to react in advance with recombinant sCD4 produced in CHO cells (Intracel, Issaquah, Wash.) for 30 min at 4°C at a concentration of 1 μg/ml, we were able to show a clear decrease in the surface binding of ogp160 to CEM-SS cells while the opposite, an obvious enhancement in surface binding, was demonstrated for J25 cells (Fig. (Fig.3).3). Open in a separate windowFIG. 3Binding of ogp160 to CEM-SS or J25 cells after exposure of the cells to the anti-CD4 antibodies Leu3a (thin solid lines), OKT4 (dotted lines), or a combination of ogp160 with sCD4 (dashed lines). The shaded areas represent background. The thick solid lines represent binding in the absence of antibodies or sCD4. The experiments were performed in quadruplicate with similar results. Mean channel fluorescence is represented on the x axis.Taken together, these data indicate that HIV Env can bind to CXCR4 independently of CD4. On the other hand, prior interaction of HIV Env with CD4 results in a clear increase in the binding of HIV Env to CXCR4.

Relevance of the glycosylation state of HIV Env in binding to CXCR4.

The binding of HIV Env to CD4 is dependent on the appropriate conformation of the Env molecule (27), which can be significantly altered by changes in its carbohydrate content. We next tested the hypothesis that alterations in the carbohydrate moieties of Env would affect its binding to CXCR4. To do so, we used the gp120 molecule from HIVSF2, produced in CHO cells, and its counterpart, nonglycosylated HIVSF2 Env 2-3, produced in yeast strain 2150, and tested both in the binding assay with CEM-SS or J25 cells. HIVSF-2 gp120 and its nonglycosylated counterpart, Env 2-3, were obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, from Kathelyn Steimer, Chiron Corp. (13, 14, 19, 26, 2931). The results are shown in Fig. Fig.4.4. As expected, nonglycosylated HIVSF2 Env 2-3 bound to the surfaces of the CEM-SS cells to a lesser extent than did HIVSF2 gp120. On the other hand, and unexpectedly, nonglycosylated HIVSF2 Env 2-3 bound much more readily to the surfaces of the J25 cells than its glycosylated counterpart, HIVSF-2 gp120, even when used at equal molar concentrations. To determine whether these findings could be generalized to other Env molecules that lacked intact carbohydrate molecules, we treated ogp160 with sodium metaperiodate. ogp160 from HIV451 at 1.25 μg/ml was treated with sodium metaperiodate (Sigma, St. Louis, Mo.) in acetate buffer for 2 h at 4°C in the dark (33). The cells to be tested had been treated previously with 1% glycine (Sigma) for 30 min at 37°C. Such treatment results in the oxidation and cleavage of the carbohydrate hydroxyl groups without affecting the structure of the polypeptide chains (33). Nonspecific binding by the resulting aldehyde groups was prevented by blocking the target cells beforehand with 1% glycine. The results are shown in Fig. Fig.4.4. Sodium metaperiodate treatment of ogp160 resulted in a marked inhibition of the binding of ogp160 to the surfaces of the CEM-SS cells. In contrast, sodium metaperiodate treatment of ogp160 resulted in a very clear increase in the binding of HIV Env to the surfaces of the J25 cells. The preexposure of CEM-SS cells to SDF1 did not significantly affect the binding of ogp160 or sodium metaperiodate-treated ogp160. On the other hand, preexposure of J25 cells to 250 nM SDF1 resulted in a marked decrease in binding of both ogp160 and sodium metaperiodate-treated ogp160. These data indicate the specificity of the interaction of the deglycosylated form of ogp160 with CXCR4. The results of these experiments suggest that the alteration in the carbohydrate content of the HIV Env molecules resulted in a better exposure of the epitopes involved in gp120 binding to CXCR4. Open in a separate windowFIG. 4Binding of HIVSF-2 gp120 or the nonglycosylated form, HIVSF-2 Env 2-3 (Non-glyc SF-2 gp120), to CEM-SS or J25 cells. The concentration was 355 nM for both. The binding of ogp160 and sodium metaperiodate-treated ogp160 (De-glyc ogp160), each at a concentration of 355 nM, to CEM-SS or J25 cells is also shown. The two right-hand bars in each graph show results for cells preexposed to SDF1 at 150 nM. The results are expressed as mean channel fluorescence. The experiments were performed in duplicate with similar results.The understanding of the underlying mechanisms by which HIV Env, CD4, and the newly discovered HIV coreceptors interact to mediate viral entry remains a very significant issue. The way that HIV Env and CD4 interact is well established (28), and some information exists about the interaction between HIV Env, CCR5, and CD4 (34). In this paper we have shown that HIV Env is able to interact in a CD4-independent manner with CXCR4. Still, the extent of such interaction was clearly lower than that of the sCD4-HIV Env complex and CXCR4. This effect of sCD4 seems to be consistent with the observation that the complexing of this molecule with HIV Env from the strains JRFL or BAL resulted in a significant increase in the affinity of HIV Env for CCR5 (34). We speculate that this interaction between sCD4 and HIV Env results in a conformational change that exposes the binding epitopes in HIV Env relevant for binding to CXCR4, as it does with other gp120 epitopes (16). A different scenario would involve a change in both molecules, resulting in a newly formed common binding epitope. This second alternative seems less likely given our data showing CD4-independent binding of HIV Env to CXCR4, as well as previous data showing the existence of HIV strains capable of CD4-independent entry into target cells (9, 15).The gp120 molecule from HIV contains 20 potential N-linked glycosylation sites, with N-linked glycans representing at least 50% of the molecular mass. Their role in CD4 binding has been studied extensively, although some of the results remain somewhat controversial. Most of the available data seem to indicate that complete lack of glycosylation completely (20), or at least partially (25), inhibits HIV Env binding to CD4. Also, enzymatic manipulation of the carbohydrate residues results in a significant decrease but not in complete abrogation of the binding of HIV Env to CD4 (11, 20, 25). It was therefore somewhat unexpected to find that the nonglycosylated form, as well as the sodium metaperiodate-treated form, of HIV Env was able to bind in such an enhanced way to CXCR4. This would appear to reinforce the concept of the existence of a binding epitope for CXCR4 within HIV Env which is different from the one for CD4. It also suggests that the changes occurring as a consequence of the manipulation of the carbohydrate residues likely result in a better exposure of the CXCR4 binding epitope(s) within the HIV Env molecule.In summary, we have shown that HIV Env can interact with CXCR4 in a CD4-independent manner. We have also shown how the interaction of CD4 with HIV Env results in a significant increase in the binding of the latter to CXCR4 and how the alterations in the carbohydrate composition of the HIV Env molecule affect its binding to CXCR4. The complete definition of these interactions may result in novel approaches to protect against cell infection by HIV.  相似文献   
68.
The experiment was organized in a 3×2 factorial arrangement with three dietary fat blends and a basal (20 mg kg?1 diet) or supplemented (220 mg kg?1) level of α-tocopheryl acetate. Dietary vitamin E and monounsaturated to polyunsaturated fatty acid ratio (dietary MUFA/PUFA) affected muscle α-tocopherol concentration (α-tocopherol [log μg g?1]=0.18 (±0.105)+0.0034 (±0.0003)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.39 (±0.122)·dietary MUFA/PUFA (P<0.0036)). An interaction between dietary α-tocopherol and dietary MUFA/PUFA exists for microsome α-tocopherol concentration (α-tocopherol [log μg g?1]=1.14 (±0.169) (P<0.0001)+0.0056 (±0.00099)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.54 (±0.206)·dietary MUFA/PUFA (P<0.0131)?0.0033 (±0.0011)·dietary α-tocopherol [mg kg?1)]×dietary MUFA/PUFA (P<0.0067)), and hexanal concentration in meat (hexanal [ng·g?1]=14807.9 (±1489.8)?28.8 (±10.6) dietary α-tocopherol [mg·kg?1] (P<0.01)?8436.6 (±1701.6)·dietary MUFA/PUFA (P<0.001)+24.0 (±11.22)·dietary α-tocopherol·dietary MUFA/PUFA (P<0.0416)). It is concluded that partial substitution of dietary PUFA with MUFA lead to an increase in the concentration of α-tocopherol in muscle and microsome extracts. An interaction between dietary α-tocopherol and fatty acids exists, in which at low level of dietary vitamin E inclusion, a low MUFA/PUFA ratio leads to a reduction in the concentration of α-tocopherol in microsome extracts and a concentration of hexanal in meat above the expected values.  相似文献   
69.
The lipid-rich cell wall of Mycobacterium tuberculosis, the agent of tuberculosis, serves as an effective barrier against many chemotherapeutic agents and toxic host cell effector molecules, and it may contribute to the mechanism of persistence. Mycobacterium tuberculosis strains mutated in a 13-gene operon called mce1, which encodes a putative ABC lipid transporter, induce aberrant granulomatous response in mouse lungs. Because of the postulated role of the mce1 operon in lipid importation, we compared the cell wall lipid composition of wild type and mce1 operon mutant M. tuberculosis H37Rv strains. High resolution mass spectrometric analyses of the mce1 mutant lipid extracts showed unbound mycolic acids to accumulate in the cell wall. Quantitative analysis revealed a 10.7 fold greater amount of free mycolates in the mutant compared to that of the wild type strain. The free mycolates were comprised of alpha, methoxy and keto mycolates in the ratio 1:0.9:0.6, respectively. Since the mce1 operon is regulated in vivo, the free mycolates that accumulate during infection may serve as a barrier for M. tuberculosis against toxic products and contribute to the pathogen’s persistence.  相似文献   
70.
Early vigour in wheat is a trait that has received attention for its benefits reducing evaporation from the soil surface early in the season. However, with the growth enhancement common to crops grown under elevated atmospheric CO2 concentrations (e[CO2]), there is a risk that too much early growth might deplete soil water and lead to more severe terminal drought stress in environments where production relies on stored soil water content. If this is the case, the incorporation of such a trait in wheat breeding programmes might have unintended negative consequences in the future, especially in dry years. We used selected data from cultivars with proven expression of high and low early vigour from the Australian Grains Free Air CO2 Enrichment (AGFACE) facility, and complemented this analysis with simulation results from two crop growth models which differ in the modelling of leaf area development and crop water use. Grain yield responses to e[CO2] were lower in the high early vigour group compared to the low early vigour group, and although these differences were not significant, they were corroborated by simulation model results. However, the simulated lower response with high early vigour lines was not caused by an earlier or greater depletion of soil water under e[CO2] and the mechanisms responsible appear to be related to an earlier saturation of the radiation intercepted. Whether this is the case in the field needs to be further investigated. In addition, there was some evidence that the timing of the drought stress during crop growth influenced the effect of e[CO2] regardless of the early vigour trait. There is a need for FACE investigations of the value of traits for drought adaptation to be conducted under more severe drought conditions and variable timing of drought stress, a risky but necessary endeavour.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号