首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1307篇
  免费   97篇
  国内免费   1篇
  1405篇
  2024年   2篇
  2023年   16篇
  2022年   19篇
  2021年   59篇
  2020年   42篇
  2019年   52篇
  2018年   52篇
  2017年   58篇
  2016年   63篇
  2015年   95篇
  2014年   107篇
  2013年   110篇
  2012年   118篇
  2011年   106篇
  2010年   70篇
  2009年   57篇
  2008年   68篇
  2007年   56篇
  2006年   42篇
  2005年   42篇
  2004年   40篇
  2003年   31篇
  2002年   20篇
  2001年   11篇
  2000年   9篇
  1999年   6篇
  1998年   8篇
  1995年   5篇
  1994年   2篇
  1992年   2篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1973年   3篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1968年   1篇
  1964年   2篇
排序方式: 共有1405条查询结果,搜索用时 15 毫秒
71.

The interactions between plants and their pollinators are the result of convergent evolution of floral attributes reflecting pressure exerted by pollinators. Nonetheless, the strategies employed by floral visitors to collect floral resources are extremely complex, and commonly involve theft or robbery in addition to pollination. We describe here the behavioral repertory of Apis mellifera during the collection of the floral resources, and evaluated the robbing rates of A. mellifera on the buds and flowers of Pyrostegia venusta during periods of intense and sparse flowering. We recorded the behaviors exhibited by foraging bees while collecting floral resources, quantified the numbers of floral buds and flowers with perforations in their corolla tissues, and determined whether that damage reduced nectar production. The evaluations were conducted during two distinct periods: during the period of intense flowering of P. venusta, and during the period of sparse flowering. Nectar robbing was observed during 93.4% of the visits of foraging A. mellifera bees, while nectar theft was observed during only 0.7% of the visits, and pollen theft during 5.9%. The robbing of floral buds and flowers was most intense during the period of heavy flowering. Flowers that had been intensely robbed secreted significantly less nectar than those non-robbed. The unusual nectar robbing activities of A. mellifera, especially during the period of intense flowering indicates an optimization of access to larger volumes of food resources. Our results therefore point to a major limitation of nectar per floral unit during the intense flowering period of P. venusta due to the high activity of nectar robbing by A. mellifera bees.

  相似文献   
72.
Francisella tularensis is an intracellular pathogen whose survival is in part dependent on its ability to resist the microbicidal activity of host-generated reactive oxygen species (ROS) and reactive nitrogen species (RNS). In numerous bacterial pathogens, CuZn-containing superoxide dismutases (SodC) are important virulence factors, localizing to the periplasm to offer protection from host-derived superoxide radicals (O2). In the present study, mutants of F. tularensis live vaccine strain (LVS) deficient in superoxide dismutases (SODs) were used to examine their role in defense against ROS/RNS-mediated microbicidal activity of infected macrophages. An in-frame deletion F. tularensis mutant of sodCsodC) and a F. tularensis ΔsodC mutant with attenuated Fe-superoxide dismutase (sodB) gene expression (sodB ΔsodC) were constructed and evaluated for susceptibility to ROS and RNS in gamma interferon (IFN-γ)-activated macrophages and a mouse model of respiratory tularemia. The F. tularensis ΔsodC and sodB ΔsodC mutants showed attenuated intramacrophage survival in IFN-γ-activated macrophages compared to the wild-type F. tularensis LVS. Transcomplementing the sodC gene in the ΔsodC mutant or inhibiting the IFN-γ-dependent production of O2 or nitric oxide (NO) enhanced intramacrophage survival of the sod mutants. The ΔsodC and sodB ΔsodC mutants were also significantly attenuated for virulence in intranasally challenged C57BL/6 mice compared to the wild-type F. tularensis LVS. As observed for macrophages, the virulence of the ΔsodC mutant was restored in ifn−/−, inos/, and phox/ mice, indicating that SodC is required for resisting host-generated ROS. To conclude, this study demonstrates that SodB and SodC act to confer protection against host-derived oxidants and contribute to intramacrophage survival and virulence of F. tularensis in mice.Francisella tularensis is considered a potential biological threat due to its extreme infectivity, ease of artificial dissemination via aerosols, and substantial capacity to cause illness and death. A hallmark of all F. tularensis subspecies is their ability to survive and replicate within macrophages (18) and other cell types (6, 11, 25, 28). While recent work has furthered our understanding of F. tularensis virulence mechanisms, little is known with respect to its ability to resist the microbicidal production of reactive oxygen species (ROS) or reactive nitrogen species (RNS).Superoxide dismutases (SODs) are metalloproteins that are classified according to their coordinating active site metals. SODs catalyze the dismutation of the highly reactive superoxide (O2) anion to hydrogen peroxide (H2O2) and O2 (26). The dismutation of O2 prevents accumulation of microbicidal ROS and RNS in infected macrophages. Three major categories of SODs have been identified in bacteria and include Mn-, Fe-, and CuZn-containing SODs (SodA, SodB, and SodC, respectively) and are required for aerobic survival (27). The F. tularensis genome encodes SodB (FTL_1791) and SodC (FTL_0380). In several intracellular bacterial pathogens, SodC is an important virulence factor, and its localization to the periplasmic space protects bacteria from host-derived O2 and NO radicals (8, 9, 21, 32). Moreover, many virulent bacteria possess two copies of the sodC gene (4). The evolutionary maintenance of an extra sodC gene copy suggests that it serves some essential function in survival (4). As an intracellular pathogen, F. tularensis is exposed to ROS and RNS generated by inflammatory cells during the macrophage activation process, which suggests that SODs may play an important role in its intracellular survival and pathogenesis. We have demonstrated that decreases in SodB activity render F. tularensis sensitive to ROS and attenuate virulence in mice (2). However, the contribution of F. tularensis SodC in virulence and intramacrophage survival has not been defined. In this study we have constructed a F. tularensis sodC mutant (ΔsodC) and a F. tularensis sodBC double mutant (sodB ΔsodC) and determined that SodC in conjunction with SodB primarily protects the pathogen from host-derived ROS and is required for intramacrophage survival and virulence of F. tularensis in mice.  相似文献   
73.
Here, we investigated which stress responses were influenced by the MpkC and SakA mitogen‐activated protein kinases of the high‐osmolarity glycerol (HOG) pathway in the fungal pathogen Aspergillus fumigatus. The ΔsakA and the double ΔmpkC ΔsakA mutants were more sensitive to osmotic and oxidative stresses, and to cell wall damaging agents. Both MpkC::GFP and SakA::GFP translocated to the nucleus upon osmotic stress and cell wall damage, with SakA::GFP showing a quicker response. The phosphorylation state of MpkA was determined post exposure to high concentrations of congo red and Sorbitol. In the wild‐type strain, MpkA phosphorylation levels progressively increased in both treatments. In contrast, the ΔsakA mutant had reduced MpkA phosphorylation, and surprisingly, the double ΔmpkC ΔsakA had no detectable MpkA phosphorylation. A. fumigatus ΔsakA and ΔmpkC were virulent in mouse survival experiments, but they had a 40% reduction in fungal burden. In contrast, the ΔmpkC ΔsakA double mutant showed highly attenuated virulence, with approximately 50% mice surviving and a 75% reduction in fungal burden. We propose that both cell wall integrity (CWI) and HOG pathways collaborate, and that MpkC could act by modulating SakA activity upon exposure to several types of stresses and during CW biosynthesis.  相似文献   
74.
75.
Species in the genus Bugula are globally distributed. They are most abundant in tropical and temperate shallow waters, but representatives are found in polar regions. Seven species occur in the Arctic and one in the Antarctic and species are represented in continental shelf or greater depths as well. The main characters used to define the genus include bird's head pedunculate avicularia, erect colonies, embryos brooded in globular ooecia and branches comprising two or more series of zooids. Skeletal morphology has been the primary source of taxonomic information for many calcified bryozoan groups, including the Buguloidea. Several morphological characters, however, have been suggested to be homoplastic at distinct taxonomic levels, in the light of molecular phylogenies. Our purpose was to investigate the phylogenetic interrelationships of the genus Bugula, based on molecular phylogenetics and morphology. A Bayesian molecular phylogeny was constructed using original and previously published sequences of the mitochondrial genes cytochrome c oxidase subunit 1 (COI) and the large ribosomal RNA subunit (16S). Morphological characteristics from scanning electron and light microscopy were used to confirm the clades detected by the molecular phylogeny. Our results suggest that the genus is composed of four clades, for which we provide diagnoses: Bugula sensu stricto (30 species), Bugulina (24 species), Crisularia (23 species) and the monotypic Virididentula gen. n. Ten species could not be assigned to any of those genera, so they remain as genus incertae sedis. Our findings highlight the importance of using molecular phylogenies in association with morphological characters in systematic revisions of bryozoan taxa.  相似文献   
76.
Land use changes have profound effects on populations of Neotropical primates, and ongoing climate change is expected to aggravate this scenario. The titi monkeys from eastern Brazil (Callicebus personatus group) have been particularly affected by this process, with four of the five species now allocated to threatened conservation status categories. Here, we estimate the changes in the distribution of these titi monkeys caused by changes in both climate and land use. We also use demographic‐based, functional landscape metrics to assess the magnitude of the change in landscape conditions for the distribution predicted for each species. We built species distribution models (SDMs) based on maximum entropy for current and future conditions (2070), allowing for different global circulation models and contrasting scenarios of glasshouse gas concentrations. We refined the SDMs using a high‐resolution map of habitat remnants. We then calculated habitat availability and connectivity based on home‐range size and the dispersal limitations of the individual, in the context of a predicted loss of 10% of forest cover in the future. The landscape configuration is predicted to be degraded for all species, regardless of the climatic settings. This include reductions in the total cover of forest remnants, patch size and functional connectivity. As the landscape configuration should deteriorate severely in the future for all species, the prevention of further loss of populations will only be achieved through habitat restoration and reconnection to counteract the negative effects for these and several other co‐occurring species.  相似文献   
77.
This study investigated the exposure of jaguar populations and domestic animals to smooth Brucella, Leptospira spp. and Toxoplasma gondii in the Cerrado, Pantanal and Amazon biomes of Brazil. Between February 2000 and January 2010, serum samples from 31 jaguars (Panthera onca), 1,245 cattle (Bos taurus), 168 domestic dogs (Canis lupus familiaris) and 29 domestic cats (Felis catus) were collected and analysed by rose bengal test for smooth Brucella, microscopic agglutination test for Leptospira spp. and modified agglutination test for T. gondii. Cattle populations from all sites (9.88%) were exposed to smooth Brucella, but only one jaguar from Cerrado was exposed to this agent. Jaguars captured in the Cerrado (60.0%) and in the Pantanal (45.5%) were seropositive for different serovars of Leptospira spp., cattle (72.18%) and domestic dogs (13.1%) from the three sites and one domestic cat from Pantanal were also seropositive for the agent. The most prevalent serotype of Leptospira spp. identified in jaguars from the Cerrado (Grippotyphosa) and the Pantanal (Pomona) biomes were distinct from those found in the domestic animals sampled. Jaguars (100%), domestic dogs (38.28%) and domestic cats (82.76%) from the three areas were exposed to T. gondii. Our results show that brucellosis and leptospirosis could have been transmitted to jaguars by domestic animals; and jaguars probably play an important role in the maintenance of T. gondii in nature.  相似文献   
78.
79.
Micromorphology of the achene surface of 26 Brazilian species of Eleocharis was studied by scanning electron microscopy in order to evaluate its usefulness in the taxonomy of the genus. The results point out two patterns of cell organization according to silica structures of achenes. The first corresponds to a group of species (group A) that have small to medium cells arranged vertically. The second is found in those species (group B) with medium to large cells arranged horizontally. These data were useful in separating species of Eleocharis subgenus Scirpidium and E. subgenus Limnochloa (group B) from E. subgenus Eleocharis (group A). However, group A shows considerable variation in silica wall arrangement. Eleocharis squamigera, previously considered as part of E. subgenus Eleocharis, shows features rather similar to those of Scirpidium, confirming recent phylogenies. The subgenus Limnochloa was clearly distinguished from others by achenes with large cells (over 55 μm width), presence of crenate or repand anticlinal walls, and some orifices near the wall in some species. The silica wall ornamentation seems to be a useful morphological tool for studying relationships between subgenera and distinguishes Limnochloa from the other subgenera.  相似文献   
80.
Transpiration from the Amazon rainforest generates an essential water source at a global and local scale. However, changes in rainforest function with climate change can disrupt this process, causing significant reductions in precipitation across Amazonia, and potentially at a global scale. We report the only study of forest transpiration following a long‐term (>10 year) experimental drought treatment in Amazonian forest. After 15 years of receiving half the normal rainfall, drought‐related tree mortality caused total forest transpiration to decrease by 30%. However, the surviving droughted trees maintained or increased transpiration because of reduced competition for water and increased light availability, which is consistent with increased growth rates. Consequently, the amount of water supplied as rainfall reaching the soil and directly recycled as transpiration increased to 100%. This value was 25% greater than for adjacent nondroughted forest. If these drought conditions were accompanied by a modest increase in temperature (e.g., 1.5°C), water demand would exceed supply, making the forest more prone to increased tree mortality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号