首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1146篇
  免费   97篇
  国内免费   1篇
  1244篇
  2023年   9篇
  2022年   24篇
  2021年   41篇
  2020年   21篇
  2019年   30篇
  2018年   25篇
  2017年   25篇
  2016年   35篇
  2015年   62篇
  2014年   71篇
  2013年   86篇
  2012年   109篇
  2011年   110篇
  2010年   57篇
  2009年   60篇
  2008年   70篇
  2007年   49篇
  2006年   69篇
  2005年   45篇
  2004年   46篇
  2003年   38篇
  2002年   31篇
  2001年   6篇
  2000年   6篇
  1999年   11篇
  1998年   22篇
  1997年   6篇
  1996年   7篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1984年   3篇
  1983年   4篇
  1982年   5篇
  1980年   2篇
  1978年   3篇
  1973年   2篇
  1972年   1篇
  1969年   2篇
  1964年   2篇
  1962年   1篇
  1961年   1篇
  1960年   1篇
排序方式: 共有1244条查询结果,搜索用时 15 毫秒
941.
Alkyl- and N,N′-bisnaphthyl-substituted imidazolium salts were tested in vitro for their anti-cancer activity against four non-small cell lung cancer cell lines (NCI–H460, NCI–H1975, HCC827, A549). All compounds had potent anticancer activity with 2 having IC50 values in the nanomolar range for three of the four cell lines, a 17-fold increase in activity against NCI-H1975 cells when compared to cisplatin. Compounds 14 also showed high anti-cancer activity against nine NSCLC cell lines in the NCI-60 human tumor cell line screen. In vitro studies performed using the Annexin V and JC-1 assays suggested that NCI-H460 cells treated with 2 undergo an apoptotic cell death pathway and that mitochondria could be the cellular target of 2 with the mechanism of action possibly related to a disruption of the mitochondrial membrane potential. The water solubilities of 14 was over 4.4 mg/mL using 2-hydroxypropyl-β-cyclodextrin as a chemical excipient, thereby providing sufficient solubility for systemic administration.  相似文献   
942.
Natural products are an abundant source of structurally diverse compounds with antibacterial activity that can be used to develop new and potent antibiotics. One such class of natural products is the pseudopyronines. Here we present the isolation of pseudopyronine B (2) from a Pseudomonas species found in garden soil in Western North Carolina, and SAR evaluation of C3 and C6 alkyl analogs of the natural product for antibacterial activity against Gram-positive and Gram-negative bacteria. We found a direct relationship between antibacterial activity and C3/C6 alkyl chain length. For inhibition of Gram-positive bacteria, alkyl chain lengths between 6 and 7 carbons were found to be the most active (IC50 = 0.04–3.8 µg/mL) whereas short alkyl chain analogs showed modest activity against Gram-negative bacteria (IC50 = 223–304 µg/mL). This demonstrates the potential for this class of natural products to be optimized for selective activity against either Gram-positive or Gram-negative bacteria.  相似文献   
943.
A series of N,N′-bis(arylmethyl)benzimidazolium salts have been synthesized and evaluated for their in vitro anti-cancer activity against select non-small cell lung cancer cell lines to create a structure activity relationship profile. The results indicate that hydrophobic substituents on the salts increase the overall anti-proliferative activity. Our data confirms that naphthylmethyl substituents at the nitrogen atoms (N1(N3)) and highly lipophilic substituents at the carbon atoms (C2 and C5(C6)) can generate benzimidazolium salts with anti-proliferative activity that is comparable to that of cisplatin. The National Cancer Institute’s Developmental Therapeutics Program tested 1, 35, 10, 11, 1318, 2025, and 2830 in their 60 human tumor cell line screen. Results were supportive of data observed in our lab. Compounds with hydrophobic substituents have higher anti-cancer activity than compounds with hydrophilic substituents.  相似文献   
944.
945.
Molecular motors such as kinesin and dynein are responsible for transporting material along microtubule networks in cells. In many contexts, motor dynamics can be modelled by a system of reaction–advection–diffusion partial differential equations (PDEs). Recently, quasi-steady-state (QSS) methods have been applied to models with linear reactions to approximate the behaviour of the full PDE system. Here, we extend this QSS reduction methodology to certain nonlinear reaction models. The QSS method relies on the assumption that the nonlinear binding and unbinding interactions of the cellular motors occur on a faster timescale than the spatial diffusion and advection processes. The full system dynamics are shown to be well approximated by the dynamics on the slow manifold. The slow manifold is parametrized by a single scalar quantity that satisfies a scalar nonlinear PDE, called the QSS PDE. We apply the QSS method to several specific nonlinear models for the binding and unbinding of molecular motors, and we use the resulting approximations to draw conclusions regarding the parameter dependence of the spatial distribution of motors for these models.  相似文献   
946.
947.
Intracellular infection with the parasite Leishmania major features a state of concomitant immunity in which CD4+ T helper 1 (Th1) cell-mediated immunity against reinfection coincides with a chronic but sub-clinical primary infection. In this setting, the rapidity of the Th1 response at a secondary site of challenge in the skin represents the best correlate of parasite elimination and has been associated with a reversal in Leishmania-mediated modulation of monocytic host cells. Remarkably, the degree to which Th1 cells are absolutely reliant upon the time at which they interact with infected monocytes to mediate their protective effect has not been defined. In the present work, we report that CXCR3-dependent recruitment of Ly6C+ Th1 effector (Th1EFF) cells is indispensable for concomitant immunity and acute (<4 days post-infection) Th1EFF cell-phagocyte interactions are critical to prevent the establishment of a permissive pathogen niche, as evidenced by altered recruitment, gene expression and functional capacity of innate and adaptive immune cells at the site of secondary challenge. Surprisingly, provision of Th1EFF cells after establishment of the pathogen niche, even when Th1 cells were provided in large quantities, abrogated protection, Th1EFF cell accumulation and IFN-γ production, and iNOS production by inflammatory monocytes. These findings indicate that protective Th1 immunity is critically dependent on activation of permissive phagocytic host cells by preactivated Th1EFF cells at the time of infection.  相似文献   
948.
The study of rare or cryptic species in zoos can provide insights into natural history and behavior that would be difficult to obtain in the field. Such information can then be used to refine population assessment protocols and conservation management. The Bermuda skink (Plestiodon longirostris) is an endemic Critically Endangered lizard. Chester Zoo's successful conservation breeding program is working to safeguard, increase and reinforce skink populations in the wild. A key aim of this program is to develop our understanding of the behavior of this species. In this study, using 24 h video recordings, we examined the daily activity patterns, basking behavior and food preferences of four pairs of Bermuda skinks. The skinks displayed a bimodal pattern of activity and basking, which may have evolved to avoid the strength of the midday sun in exposed habitats in Bermuda. Captive Bermuda skinks appear to prefer a fruit-based diet to orthopteran prey. We also documented their reproductive behavior and compared it against two closely related species. Although there were many similarities between the courtship and mating behaviors of the three species, there was a significantly shorter period of cloacal contact in the Bermuda skink. Oophagia was also documented for the first time in this species. This knowledge has enabled the evaluation of the current ex-situ management practices of this species, filled gaps in knowledge that would be challenging to obtain in the field, and enabled the enhancement of both animal husbandry and reproductive success for the conservation breeding program.  相似文献   
949.
Expansins are cell wall proteins associated with the process of plant growth. However, investigations in which expansin gene expression has been manipulated throughout the plant have often led to inconclusive results. In this article, we report on a series of experiments in which overexpression of expansin was targeted to specific phases of leaf growth using an inducible promoter system. The data indicate that there is a restricted window of sensitivity when increased expansin gene expression leads to increased endogenous expansin activity and an increase in leaf growth. This phase of maximum expansin efficacy corresponds to the mid phase of leaf growth. We propose that the effectiveness of expansin action depends on the presence of other modulating factors in the leaf and we suggest that it is the control of expression of these factors (in conjunction with expansin gene expression) that defines the extent of leaf growth. These data help to explain some of the previously observed variation in growth response following manipulation of expansin gene expression and highlight a potential linkage of the expression of modifiers of expansin activity with the process of exit from cell division.Expansins were initially identified as cell wall proteins that had the ability to promote the extension of plant tissue in vitro (McQueen-Mason et al., 1992). Further work on these proteins and the genes encoding them has revealed a picture in which, although a general correlation with growth has often been substantiated, it is clear that control of growth is a much more complex process than the control of expression of a single protein type (for review, see Cosgrove, 2000; Lee et al., 2001; Li et al., 2003). In addition, although it is clear that expansins play a role in many growth processes, there are a number of open questions about exactly how expansins contribute to these processes. First, we still have a very limited understanding of the molecular mechanism of expansin action. Efforts to identify classical enzymatic activities associated with expansins have proven fruitless (McQueen-Mason and Cosgrove, 1995; Li and Cosgrove, 2001) and the remaining, somewhat speculative, interpretation is that expansins intercalate within carbohydrate matrices in the cell wall, leading to transient loosening of noncovalent interactions and, thus, the ability of these matrices to move relative to each other (McQueen-Mason and Cosgrove., 1994). In addition, by unlocking aspects of the molecular architecture of the cell wall, expansins may allow access of other cell wall proteins/enzymes to particular substrates. Depending on the nature of these other proteins/enzymes, expansin activity could thus be associated not only with growth processes, but also with cell wall modifications linked with differentiation. Such a mechanism would help to explain observations (described below) that the effectiveness of expansin action appears to be context dependent and is not only associated with changes in plant growth but also with differentiation.Various analyses have revealed that expansins are present in a wide range of plants, including bryophytes, ferns, angiosperms, and conifers (Hutchison et al., 1999; Kim et al., 2000; Schipper et al., 2002). Moreover, they are generally encoded by relatively large gene families whose members often show distinct patterns of gene expression (Kende et al., 2004). Some of these expression patterns correlate with growth processes, such as root growth (Wu et al., 1996), internode growth (Cho and Kende, 1997), leaf growth (Muller et al., 2007), and cotton (Gossypium hirsutum) fiber growth (Ruan et al., 2001), whereas others correlate with events of differentiation, such as fruit ripening (Rose et al., 1997; Brummell et al., 1999b), grass tiller formation (Reidy et al., 2001), and endosperm breakdown (Chen and Bradford, 2000). In addition, some novel nonplant expansin activities have been identified that suggest that pathogens may induce altered cell wall structure via an expansin-mediated mechanism (Qin et al., 2004). Since in vitro assays have suggested that the activities of expansins extracted from different sources tend to be similar (Cosgrove, 2000), it has been proposed that this tissue, organ, and environmental specificity of expression pattern reflects a specialized role for expansins in specific contexts rather than any major difference in activity of the protein. As stated above, this specific function may depend on the presence (or absence) of tissue-specific cofactors, the nature of which is as yet unclear.In addition to biochemical approaches to understanding expansin function, numerous groups have undertaken transgenic experiments to alter expansin gene expression in plants to observe the outcome on plant phenotype. Although some successes with antisense strategies have been reported (Brummell et al., 1999a; Cho and Cosgrove, 2000), the encoding of expansin by large gene families means that genetic redundancy poses a significant problem for such approaches (e.g. Schipper et al., 2002). Simple overexpression strategies to alter expansin activity may also be difficult to interpret. For example, when expansins were constitutively overexpressed throughout Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), and rice (Oryza sativa) plants, the outcomes tended to be pleiotropic, including a decrease in overall plant growth (Cho and Cosgrove, 2000; Rochange et al., 2001; Choi et al., 2003). However, when altered expansin expression was targeted more specifically to a particular tissue or organ, then more easily interpretable results were obtained. For example, when altered expansin expression was directed to the developing leaf petiole in Arabidopsis, altered leaf growth was observed (Cho and Cosgrove, 2000), consistent with the idea that expansins promote growth, and when inducible expression of expansin was targeted throughout rice plants, quantitative changes in growth were observed (Choi et al., 2003). The results of these experiments indicate that expansin gene expression can be used as a tool to modulate growth, but that the timing and spatial extent of expression can have a significant influence on the phenotype observed. Again, these data support the hypothesis that the effectiveness of expansin in promoting specific growth or differentiation events is dependent on the presence of particular tissue- or developmental-specific cofactors. So far, little progress has been made on the identification and characterization of these cofactors.In previous work, we reported on the characterization of transgenic lines of tobacco (Nicotiana tabacum) in which a cucumber (Cucumis sativus) expansin (CsEXP1) could be induced by application of a chemical inducer (anhydrotetracycline [Ahtet]). In these experiments, we targeted expansin overexpression to localized regions of either the shoot apical meristem or very young leaf primordia, which led to localized promotion of growth (Pien et al., 2001), consistent with the idea that expansins play a role in the endogenous mechanism of leaf initiation (Reinhardt et al., 1998). However, when inductions were performed throughout the plant the resulting phenotypes were variable and difficult to interpret (S. Pien and A. Fleming, unpublished data), in line with other reports (Rochange et al., 2001). To investigate the possibility that this variable response reflected a differential sensitivity to expansin in different tissues at different stages of development, we performed a series of experiments (reported here) in which overexpression of expansin was targeted to specific stages of leaf growth. Our data indicate that the efficacy of expansin action depends on the presence of other factors that are present in a developmentally controlled fashion, so that increased expansin gene expression is only effective in promoting leaf growth during a specific developmental period of leaf growth. This period corresponds to the inflection point of relative growth rate (RGR) and, thus, to the phase of maximum leaf growth rate. An intriguing article by Cookson et al. (2005) reported on potential correlations between various parameters of leaf growth and final leaf size. They found that the best predictor of final leaf size was the maximum value of absolute leaf growth rate. Thus, the experiments reported here identify a novel, developmental control of expansin efficacy in the regulation of leaf growth, investigate the reported correlation between maximal leaf expansion rate and leaf size, and provide an insight into potential means of controlling leaf growth.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号