首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1222篇
  免费   104篇
  国内免费   1篇
  2023年   10篇
  2022年   26篇
  2021年   41篇
  2020年   22篇
  2019年   30篇
  2018年   27篇
  2017年   26篇
  2016年   38篇
  2015年   63篇
  2014年   72篇
  2013年   89篇
  2012年   114篇
  2011年   112篇
  2010年   64篇
  2009年   62篇
  2008年   72篇
  2007年   52篇
  2006年   70篇
  2005年   48篇
  2004年   49篇
  2003年   40篇
  2002年   36篇
  2001年   10篇
  2000年   10篇
  1999年   11篇
  1998年   24篇
  1997年   7篇
  1996年   7篇
  1995年   9篇
  1994年   8篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   7篇
  1989年   8篇
  1988年   4篇
  1987年   7篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1978年   3篇
  1973年   2篇
  1972年   2篇
  1969年   2篇
  1964年   2篇
  1960年   1篇
排序方式: 共有1327条查询结果,搜索用时 15 毫秒
71.
72.
73.
Molecular understanding of the mechanism of excitation-contraction (EC) coupling in skeletal muscle has been made possible by cultured myotube models lacking specific dihydropyridine receptor (DHPR) subunits and ryanodine receptor type 1 (RyR1) isoforms. Transient expression of missing cDNAs in mutant myotubes leads to a rapid recovery, within days, of various Ca2+ current and EC coupling phenotypes. These myotube models have thus permitted structure-function analysis of EC coupling domains present in the DHPR controlling the opening of RyR1. The purpose of this brief review is to highlight advances made by this laboratory towards understanding the contribution of domains present in alpha1S and beta1a subunits of the skeletal DHPR to EC coupling signaling. Our main contention is that domains of the alpha1S II-III loop are necessary but not sufficient to recapitulate skeletal-type EC coupling. Rather, the structural unit that controls the EC coupling signal appears to be the alpha1S/beta1a pair.  相似文献   
74.
Orexins, also termed hypocretins, consist of two neuropeptide agonists (orexin A and B) interacting with two known G-protein coupled receptors (OX(1)R and OX(2)R). In addition to other biological functions, the orexin-2 receptor is thought to be an important modulator of sleep and wakefulness. Herein we describe a series of novel, selective OX(2)R antagonists consisting of substituted 4-phenyl-[1,3]dioxanes. One such antagonist is compound 9, 1-(2,4-dibromo-phenyl)-3-((4S,5S)-2,2-dimethyl-4-phenyl-[1,3]dioxan-5-yl)-urea, which is bound by the OX(2)R with a pK(i) of 8.3, has a pK(b) of 7.9, and is 600-fold selective for the OX(2)R over the OX(1)R.  相似文献   
75.
76.

Background  

To identify differentially expressed genes across experimental conditions in oligonucleotide microarray experiments, existing statistical methods commonly use a summary of probe-level expression data for each probe set and compare replicates of these values across conditions using a form of the t-test or rank sum test. Here we propose the use of a statistical method that takes advantage of the built-in redundancy architecture of high-density oligonucleotide arrays.  相似文献   
77.
Arrestins mediate phosphorylation-dependent desensitization, internalization, and initiation of signaling cascades for the majority of G protein-coupled receptors (GPCRs). Many GPCRs undergo agonist-mediated internalization through arrestin-dependent mechanisms, wherein arrestin serves as an adapter between the receptor and endocytic proteins. To understand the role of arrestins in N-formyl peptide receptor (FPR) trafficking, we stably expressed the FPR in a mouse embryonic fibroblast cell line (MEF) that lacked endogenous arrestin 2 and arrestin 3 (arrestin-deficient). We compared FPR internalization and recycling kinetics in these cells to congenic wild type MEF cell lines. Internalization of the FPR was not altered in the absence of arrestins. Since the FPR remains associated with arrestins following internalization, we investigated whether the rate of FPR recycling was altered in arrestin-deficient cells. While the FPR was able to recycle in the wild type cells, receptor recycling was largely absent in the arrestin double knockout cells. Reconstitution of the arrestin-deficient line with either arrestin 2 or arrestin 3 restored receptor recycling. Confocal fluorescence microscopy studies demonstrated that in arrestin-deficient cells the FPR may become trapped in the perinuclear recycling compartment. These observations indicate that, although the FPR can internalize in the absence of arrestins, recycling of internalized receptors to the cell surface is prevented. Our results suggest a novel role for arrestins in the post-endocytic trafficking of GPCRs.  相似文献   
78.
79.
Molecular determinants essential for skeletal-type excitation-contraction (EC) coupling have been described in the cytosolic loops of the dihydropyridine receptor (DHPR) alpha1S pore subunit and in the carboxyl terminus of the skeletal-specific DHPR beta1a-subunit. It is unknown whether EC coupling domains present in the beta-subunit influence those present in the pore subunit or if they act independent of each other. To address this question, we investigated the EC coupling signal that is generated when the endogenous DHPR pore subunit alpha1S is paired with the heterologous heart/brain DHPR beta2a-subunit. Studies were conducted in primary cultured myotubes from beta1 knockout (KO), ryanodine receptor type 1 (RyR1) KO, ryanodine receptor type 3 (RyR3) KO, and double RyR1/RyR3 KO mice under voltage clamp with simultaneous monitoring of confocal fluo-4 fluorescence. The beta2a-mediated Ca2+ current recovered in beta1 KO myotubes lacking the endogenous DHPR beta1a-subunit verified formation of the alpha1S/beta1a pair. In myotube genotypes which express no or low-density L-type Ca2+ currents, namely beta1 KO and RyR1 KO, beta2a overexpression recovered a wild-type density of nifedipine-sensitive Ca2+ currents with a slow activation kinetics typical of skeletal myotubes. Concurrent with Ca2+ current recovery, there was a drastic reduction of voltage-dependent, skeletal-type EC coupling and emergence of Ca2+ transients triggered by the Ca2+ current. A comparison of beta2a overexpression in RyR3 KO, RyR1 KO, and double RyR1/RyR3 KO myotubes concluded that both RyR1 and RyR3 isoforms participated in Ca2+-dependent Ca2+ release triggered by the beta2a-subunit. In beta1 KO and RyR1 KO myotubes, the Ca2+-dependent EC coupling promoted by beta2a overexpression had the following characteristics: 1), L-type Ca2+ currents had a wild-type density; 2), Ca2+ transients activated much slower than controls overexpressing beta1a, and the rate of fluorescence increase was consistent with the activation kinetics of the Ca2+ current; 3), the voltage dependence of the Ca2+ transient was bell-shaped and the maximum was centered at approximately +30 mV, consistent with the voltage dependence of the Ca2+ current; and 4), Ca2+ currents and Ca2+ transients were fully blocked by nifedipine. The loss in voltage-dependent EC coupling promoted by beta2a was inferred by the drastic reduction in maximal Ca2+ fluorescence at large positive potentials (DeltaF/Fmax) in double dysgenic/beta1 KO myotubes overexpressing the pore mutant alpha1S (E1014K) and beta2a. The data indicate that beta2a, upon interaction with the skeletal pore subunit alpha1S, overrides critical EC coupling determinants present in alpha1S. We propose that the alpha1S/beta pair, and not the alpha1S-subunit alone, controls the EC coupling signal in skeletal muscle.  相似文献   
80.
Ceramides are known to play a major regulatory role in apoptosis by inducing cytochrome c release from mitochondria. We have previously reported that ceramide, but not dihydroceramide, forms large and stable channels in phospholipid membranes and outer membranes of isolated mitochondria. C(2)-ceramide channel formation is characterized by conductance increments ranging from <1 to >200 nS. These conductance increments often represent the enlargement and contracture of channels rather than the opening and closure of independent channels. Enlargement is supported by the observation that many small conductance increments can lead to a large decrement. Also the initial conductances favor cations, but this selectivity drops dramatically with increasing total conductance. La(+3) causes rapid ceramide channel disassembly in a manner indicative of large conducting structures. These channels have a propensity to contract by a defined size (often multiples of 4 nS) indicating the formation of cylindrical channels with preferred diameters rather than a continuum of sizes. The results are consistent with ceramides forming barrel-stave channels whose size can change by loss or insertion of multiple ceramide columns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号