全文获取类型
收费全文 | 1144篇 |
免费 | 97篇 |
国内免费 | 1篇 |
专业分类
1242篇 |
出版年
2023年 | 9篇 |
2022年 | 24篇 |
2021年 | 41篇 |
2020年 | 21篇 |
2019年 | 30篇 |
2018年 | 25篇 |
2017年 | 25篇 |
2016年 | 35篇 |
2015年 | 62篇 |
2014年 | 71篇 |
2013年 | 86篇 |
2012年 | 109篇 |
2011年 | 108篇 |
2010年 | 57篇 |
2009年 | 60篇 |
2008年 | 70篇 |
2007年 | 49篇 |
2006年 | 69篇 |
2005年 | 45篇 |
2004年 | 46篇 |
2003年 | 38篇 |
2002年 | 31篇 |
2001年 | 6篇 |
2000年 | 7篇 |
1999年 | 11篇 |
1998年 | 22篇 |
1997年 | 6篇 |
1996年 | 7篇 |
1995年 | 6篇 |
1994年 | 7篇 |
1993年 | 5篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1990年 | 6篇 |
1989年 | 6篇 |
1988年 | 4篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1984年 | 3篇 |
1983年 | 4篇 |
1982年 | 3篇 |
1980年 | 2篇 |
1978年 | 3篇 |
1973年 | 2篇 |
1972年 | 1篇 |
1969年 | 2篇 |
1964年 | 2篇 |
1962年 | 1篇 |
1961年 | 1篇 |
1960年 | 1篇 |
排序方式: 共有1242条查询结果,搜索用时 12 毫秒
131.
Patel V Booker M Kramer M Ross L Celatka CA Kennedy LM Dvorin JD Duraisingh MT Sliz P Wirth DF Clardy J 《The Journal of biological chemistry》2008,283(50):35078-35085
Plasmodium falciparum causes the most deadly form of malaria and accounts for over one million deaths annually. The malaria parasite is unable to salvage pyrimidines and relies on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHOD), a mitochondrially localized flavoenzyme, catalyzes the rate-limiting step of this pathway and is therefore an attractive antimalarial chemotherapeutic target. Using a target-based high throughput screen, we have identified a series of potent, species-specific inhibitors of P. falciparum DHOD (pfDHOD) that are also efficacious against three cultured strains (3D7, HB3, and Dd2) of P. falciparum. The primary antimalarial mechanism of action of these compounds was confirmed to be inhibition of pfDHOD through a secondary assay with transgenic malaria parasites, and the structural basis for enzyme inhibition was explored through in silico structure-based docking and site-directed mutagenesis. Compound-mediated cytotoxicity was not observed with human dermal fibroblasts or renal epithelial cells. These data validate pfDHOD as an antimalarial drug target and provide chemical scaffolds with which to begin medicinal chemistry efforts. 相似文献
132.
Ross KA Feazel LM Robertson CE Fathepure BZ Wright KE Turk-Macleod RM Chan MM Held NL Spear JR Pace NR 《Microbial ecology》2012,64(1):162-170
The mesothermal outflow zones (50-65°C) of geothermal springs often support an extensive zone of green and orange laminated microbial mats. In order to identify and compare the microbial inhabitants of morphologically similar green-orange mats from chemically and geographically distinct springs, we generated and analyzed small-subunit ribosomal RNA (rRNA) gene amplicons from six mesothermal mats (four previously unexamined) in Yellowstone National Park. Between three and six bacterial phyla dominated each mat. While many sequences bear the highest identity to previously isolated phototrophic genera belonging to the Cyanobacteria, Chloroflexi, and Chlorobi phyla, there is also frequent representation of uncultured, unclassified members of these groups. Some genus-level representatives of these dominant phyla were found in all mats, while others were unique to a single mat. Other groups detected at high frequencies include candidate divisions (such as the OP candidate clades) with no cultured representatives or complete genomes available. In addition, rRNA genes related to the recently isolated and characterized photosynthetic acidobacterium "Candidatus Chloracidobacterium thermophilum" were detected in most mats. In contrast to microbial mats from well-studied hypersaline environments, the mesothermal mats in this study accrue less biomass and are substantially less diverse, but have a higher proportion of known phototrophic organisms. This study provides sequences appropriate for accurate phylogenetic classification and expands the molecular phylogenetic survey of Yellowstone microbial mats. 相似文献
133.
134.
Schneider Céline M. Steeves Katherine L. Mercer Grace V. George Hannah Paranavitana Leah Simpson Myrna J. Simpson André J. Cahill Lindsay S. 《Metabolomics : Official journal of the Metabolomic Society》2022,18(1):1-11
Metabolomics - The study of lipoprotein metabolism at the population level can provide valuable information for the organisation of lipoprotein related processes in the body. To use this... 相似文献
135.
Constantin Jansen Natalia de Leon Nick Lauter Candice Hirsch Leah Ruff Thomas Lübberstedt 《Bioenergy Research》2013,6(3):903-916
Expected future cellulosic ethanol production increases the demand for biomass in the US Corn Belt. With low nutritious value, low nitrogen content, and compact biomass, maize cobs can provide a significant amount of cellulosic materials. The value of maize cobs depends on cob architecture, chemical composition, and their relation to grain yield as primary trait. Eight traits including cob volume, fractional diameters, length, weight, tissue density, and grain yield have been analyzed in this quantitative trait locus (QTL) mapping experiment to evaluate their inheritance and inter-relations. One hundred eighty-four recombinant inbred lines of the intermated B73?×?Mo17 (IBM) Syn 4 population were evaluated from an experiment carried out at three locations and analyzed using genotypic information of 1,339 public SNP markers. QTL detection was performed using (1) comparison-wise thresholds with reselection of cofactors (α?=?0.001) and (2) empirical logarithm of odds score thresholds (P?=?0.05). Several QTL with small genetic effects (R 2?=?2.9–13.4 %) were found, suggesting a complex quantitative inheritance of all traits. Increased cob tissue density was found to add value to the residual without a commensurate negative impact on grain yield and therefore enables for simultaneous selection for cob biomass and grain yield. 相似文献
136.
Alanna M. Gilmour Samar Abdulkhalek Timothy S.W. Cheng Farah Alghamdi Preethi Jayanth Leah K. O’Shea Olivia Geen Luis A. Arvizu Myron R. Szewczuk 《Cellular signalling》2013,25(12):2587-2603
Epidermal growth factor (EGF)-induced EGFR tyrosine kinase receptor activation in cancer cell survival responses has become a strategic molecular-targeting clinical therapeutic intent, but the failures of these targeted approaches in the clinical setting demand alternate strategies. Here, we uncover a novel neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with GPCR neuromedin B, which is essential for EGF-induced receptor activation and cellular signaling. Neu1 and MMP-9 form a complex with EGFR on the cell surface. Tamiflu (oseltamivir phosphate), anti-Neu1 antibodies, broad range MMP inhibitor galardin (GM6001), neuromedin B GPCR specific antagonist BIM-23127, the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 and MMP-9 specific inhibitor dose-dependently inhibited Neu1 activity associated with EGF stimulated 3T3–hEGFR cells. Tamiflu, anti-Neu1 antibodies and MMP9i attenuated EGFR phosphorylation associated with EGF-stimulated cells. Preclinical data provide the proof-of-evidence for a therapeutic targeting of Neu1 with Tamiflu in impeding human pancreatic cancer growth and metastatic spread in heterotopic xenografts of eGFP-MiaPaCa-2 tumors growing in RAGxCγ double mutant mice. Tamiflu-treated cohort exhibited a reduction of phosphorylation of EGFR-Tyr1173, Stat1-Tyr701, Akt-Thr308, PDGFRα-Tyr754 and NFκBp65-Ser311 but an increase in phospho-Smad2-Ser465/467 and -VEGFR2-Tyr1175 in the tumor lysates from the xenografts of human eGFP-MiaPaCa-2 tumor-bearing mice. The findings identify a novel promising alternate therapeutic treatment of human pancreatic cancer. 相似文献
137.
The Drosophila PAN GU (PNG) kinase complex regulates the developmental translation of cyclin B. cyclin B mRNA becomes unmasked during oogenesis independent of PNG activity, but PNG is required for translation from egg activation. We find that although polyadenylation of cyclin B augments translation, it is not essential, and a fully elongated poly(A) is not required for translation to proceed. In fact, changes in poly(A) tail length are not sufficient to account for PNG-mediated control of cyclin B translation and of the early embryonic cell cycles. We present evidence that PNG functions instead as an antagonist of PUMILIO-dependent translational repression. Our data argue that changes in poly(A) tail length are not a universal mechanism governing embryonic cell cycles, and that PNG-mediated derepression of translation is an important alternative mechanism in Drosophila. 相似文献
138.
Ray Dybzinski Angelo Kelvakis John McCabe Samantha Panock Kanyarak Anuchitlertchon Leah Vasarhelyi M. Luke McCormack Gordon G. McNickle Hendrik Poorter Clare Trinder Caroline E. Farrior 《Global Change Biology》2019,25(3):885-899
Understanding the effects of global change in terrestrial communities requires an understanding of how limiting resources interact with plant traits to affect productivity. Here, we focus on nitrogen and ask whether plant community nitrogen uptake rate is determined (a) by nitrogen availability alone or (b) by the product of nitrogen availability and fine‐root mass. Surprisingly, this is not empirically resolved. We performed controlled microcosm experiments and reanalyzed published pot experiments and field data to determine the relationship between community‐level nitrogen uptake rate, nitrogen availability, and fine‐root mass for 46 unique combinations of species, nitrogen levels, and growing conditions. We found that plant community nitrogen uptake rate was unaffected by fine‐root mass in 63% of cases and saturated with fine‐root mass in 29% of cases (92% in total). In contrast, plant community nitrogen uptake rate was clearly affected by nitrogen availability. The results support the idea that although plants may over‐proliferate fine roots for individual‐level competition, it comes without an increase in community‐level nitrogen uptake. The results have implications for the mechanisms included in coupled carbon‐nitrogen terrestrial biosphere models (CN‐TBMs) and are consistent with CN‐TBMs that operate above the individual scale and omit fine‐root mass in equations of nitrogen uptake rate but inconsistent with the majority of CN‐TBMs, which operate above the individual scale and include fine‐root mass in equations of nitrogen uptake rate. For the much smaller number of CN‐TBMs that explicitly model individual‐based belowground competition for nitrogen, the results suggest that the relative (not absolute) fine‐root mass of competing individuals should be included in the equations that determine individual‐level nitrogen uptake rates. By providing empirical data to support the assumptions used in CN‐TBMs, we put their global climate change predictions on firmer ground. 相似文献
139.
Methods were developed to perform precipitation photopolymerization of PEG-diacrylate. Previously, comonomers have been added to PEG when precipitation polymerization was desired. In the present method, the LCST of the PEG itself was lowered by the addition of the kosmotropic salt sodium sulfate to an aqueous solution. Typical of a precipitation polymerization, small microparticles or microspheres (1-5 μm) resulted with relatively low polydispersity. However, aggregate formation was often severe, presumably because of a lack of stabilization of the phase-separated colloids. Microparticles were also produced by copoymerization of PEG-diacrylate with acrylic acid or aminoethylmethacrylate. The comonomers affected the zeta potential of the formed microparticles but not the size. The carboxyl groups of acrylic-acid-containing PEG microparticles were activated, and scaffolds were formed by mixing with amine-containing PEG microparticles. Although the scaffolds were relatively weak, human hepatoma cells showed excellent viability when present during microparticle cross-linking. 相似文献
140.
Although pharmacological agonists of protein kinase C (PKC) stimulate some events of mammalian egg activation, including cortical granule (CG) exocytosis, it is not known if these events are dependent on PKC activation during the normal process of fertilization. In order to examine the potential role of PKC in CG exocytosis, this study investigated whether PKC agonists faithfully mimic CG release and whether PKC antagonists block fertilization-induced CG release in mature mouse eggs. Phorbol ester (TPA, 2.5 ng/ml) treatment resulted in an atypical pattern of CG release in which there was a greater net loss of CGs in the equatorial region of the egg than in the region opposite the spindle. This pattern also was in contrast to that during fertilization, in which CG release occurred randomly throughout the cortex. Fertilization experiments utilized two different PKC inhibitors, bisindolyl-maleimide (5 μM) and chelerytherine (0.8 μM), targeted to both the “conserved” substrate and ATP binding domains of PKC. Simultaneous use of both inhibitors at maximal concentrations (compatible with fertilization and above their IC50S) resulted in no detectable inhibition of CG release in treated fertilized eggs compared to controls. In addition, no inhibition of anaphase onset was observed in treated fertilized eggs. Activity of the inhibitors was verified by demonstrating that they blocked the induction of CG loss by TPA. Moreover, 1 μM staurosporine, a potent but less specific antagonist of PKC, also did not block CG loss, whereas the metaphase-anaphase transition was temporarily inhibited. The results indicate that TPA does not faithfully mimic CG release in fertilized eggs, that a role for PKC in CG release at fertilization remains to be established, and that other calcium-dependent effectors may be involved in CG exocytosis. Mol Reprod Dev 46:216–226, 1997. © 1997 Wiley-Liss, Inc. 相似文献