首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   769篇
  免费   98篇
  2020年   7篇
  2019年   14篇
  2018年   8篇
  2017年   11篇
  2016年   9篇
  2015年   24篇
  2014年   24篇
  2013年   35篇
  2012年   52篇
  2011年   49篇
  2010年   19篇
  2009年   22篇
  2008年   23篇
  2007年   36篇
  2006年   27篇
  2005年   21篇
  2004年   26篇
  2003年   21篇
  2002年   22篇
  2001年   25篇
  2000年   28篇
  1999年   17篇
  1998年   14篇
  1997年   13篇
  1996年   10篇
  1995年   12篇
  1994年   15篇
  1993年   7篇
  1992年   17篇
  1991年   12篇
  1990年   9篇
  1989年   12篇
  1988年   12篇
  1987年   10篇
  1986年   11篇
  1985年   10篇
  1983年   7篇
  1981年   6篇
  1980年   11篇
  1979年   13篇
  1978年   15篇
  1977年   9篇
  1976年   5篇
  1975年   9篇
  1974年   7篇
  1973年   11篇
  1972年   10篇
  1971年   6篇
  1969年   12篇
  1966年   9篇
排序方式: 共有867条查询结果,搜索用时 93 毫秒
41.
Circadian (clock) genes have been linked with several functions relevant to cancer, and epidemiologic research has suggested relationships with breast cancer risk for variants in NPAS2, CLOCK, CRY2 and TIMELESS. Increased breast cancer risk has also been observed among shift workers, suggesting potential interactions in relationships of circadian genes with breast cancer. Relationships with breast cancer of 100 SNPs in 14 clock-related genes, as well as potential interactions with shift work history, were investigated in a case–control study (1042 cases, 1051 controls). Odds ratios in an additive genetic model for European-ancestry participants (645 cases, 806 controls) were calculated, using a two-step correction for multiple testing: within each gene through permutation testing (10,000 permutations), and correcting for the false discovery rate across genes. Interactions of genotypes with ethnicity and shift work (<2 years vs ≥2 years) were evaluated individually. Following permutation analysis, two SNPs (rs3816360 in ARNTL and rs11113179 in CRY1) displayed significant associations with breast cancer and one SNP (rs3027188 in PER1) was marginally significant; however, none were significant following adjustment for the false discovery rate. No significant interaction with shift work history was detected. If shift work causes circadian disruption, this was not reflected in associations between clock gene variants and breast cancer risk in this study. Larger studies are needed to assess interactions with longer durations (>30 years) of shift work that have been associated with breast cancer.  相似文献   
42.
A putative driver of global amphibian decline is the panzootic chytrid fungus Batrachochytrium dendrobatidis (Bd). While Bd has been documented across continental Africa, its distribution in West Africa remains ambiguous. We tested 793 West African amphibians (one caecilian and 61 anuran species) for the presence of Bd. The samples originated from seven West African countries - Bénin, Burkina Faso, Côte d''Ivoire, Ghana, Guinea, Liberia, Sierra Leone - and were collected from a variety of habitats, ranging from lowland rainforests to montane forests, montane grasslands to humid and dry lowland savannahs. The species investigated comprised various life-history strategies, but we focused particularly on aquatic and riparian species. We used diagnostic PCR to screen 656 specimen swabs and histology to analyse 137 specimen toe tips. All samples tested negative for Bd, including a widespread habitat generalist Hoplobatrachus occipitalis which is intensively traded on the West African food market and thus could be a potential dispersal agent for Bd. Continental fine-grained (30 arc seconds) environmental niche models suggest that Bd should have a broad distribution across West Africa that includes most of the regions and habitats that we surveyed. The surprising apparent absence of Bd in West Africa indicates that the Dahomey Gap may have acted as a natural barrier. Herein we highlight the importance of this Bd-free region of the African continent - especially for the long-term conservation of several threatened species depending on fast flowing forest streams (Conraua alleni (“Vulnerable”) and Petropedetes natator (“Near Threatened”)) as well as the “Critically Endangered” viviparous toad endemic to the montane grasslands of Mount Nimba (Nimbaphrynoides occidentalis).  相似文献   
43.
The poor survival of adenocarcinomas of the gastroesophageal junction (GEJ) makes them clinically important. Discovery of host genetic factors that affect outcome may guide more individualized treatment. This study tests whether constitutional genetic variants in matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) genes are associated with outcome of GEJ adenocarcinoma. Single nucleotide polymorphisms (SNPs) at four TIMP (TIMP1-4) and three MMP genes (MMP2, MMP7 and MMP9) were genotyped in DNA samples from a prospective cohort of patients with primary adenocarcinoma of the GEJ admitted to the British Columbia Cancer Agency. Cox proportional hazards regression, with adjustment for patient, disease and treatment variables, was used to estimate the association of SNPs with survival. Genotypes for 85 samples and 48 SNPs were analyzed. Four SNPs across TIMP3, (rs130274, rs715572, rs1962223 and rs5754312) were associated with survival. Interaction analyses revealed that the survival associations with rs715572 and rs5754312 are specific and significant for 5FU+cisplatin treated patients. Sanger sequencing of the TIMP3 coding and promoter regions revealed an additional SNP, rs9862, also associated with survival. TIMP3 genetic variants are associated with survival and may be potentially useful in optimizing treatment strategies for individual patients.  相似文献   
44.

Objectives

To evaluate sources of error in the Magnetic Resonance Imaging (MRI) measurement of percent fibroglandular tissue (%FGT) using two-point Dixon sequences for fat-water separation.

Methods

Ten female volunteers (median age: 31 yrs, range: 23–50 yrs) gave informed consent following Research Ethics Committee approval. Each volunteer was scanned twice following repositioning to enable an estimation of measurement repeatability from high-resolution gradient-echo (GRE) proton-density (PD)-weighted Dixon sequences. Differences in measures of %FGT attributable to resolution, T1 weighting and sequence type were assessed by comparison of this Dixon sequence with low-resolution GRE PD-weighted Dixon data, and against gradient-echo (GRE) or spin-echo (SE) based T1-weighted Dixon datasets, respectively.

Results

%FGT measurement from high-resolution PD-weighted Dixon sequences had a coefficient of repeatability of ±4.3%. There was no significant difference in %FGT between high-resolution and low-resolution PD-weighted data. Values of %FGT from GRE and SE T1-weighted data were strongly correlated with that derived from PD-weighted data (r = 0.995 and 0.96, respectively). However, both sequences exhibited higher mean %FGT by 2.9% (p < 0.0001) and 12.6% (p < 0.0001), respectively, in comparison with PD-weighted data; the increase in %FGT from the SE T1-weighted sequence was significantly larger at lower breast densities.

Conclusion

Although measurement of %FGT at low resolution is feasible, T1 weighting and sequence type impact on the accuracy of Dixon-based %FGT measurements; Dixon MRI protocols for %FGT measurement should be carefully considered, particularly for longitudinal or multi-centre studies.  相似文献   
45.
Hu XH  Wang MH  Tan T  Li JR  Yang H  Leach L  Zhang RM  Luo ZW 《Genetics》2007,175(3):1479-1487
Uncovering genetic control of variation in ethanol tolerance in natural populations of yeast Saccharomyces cerevisiae is essential for understanding the evolution of fermentation, the dominant lifestyle of the species, and for improving efficiency of selection for strains with high ethanol tolerance, a character of great economic value for the brewing and biofuel industries. To date, as many as 251 genes have been predicted to be involved in influencing this character. Candidacy of these genes was determined from a tested phenotypic effect following gene knockout, from an induced change in gene function under an ethanol stress condition, or by mutagenesis. This article represents the first genomics approach for dissecting genetic variation in ethanol tolerance between two yeast strains with a highly divergent trait phenotype. We developed a simple but reliable experimental protocol for scoring the phenotype and a set of STR/SNP markers evenly covering the whole genome. We created a mapping population comprising 319 segregants from crossing the parental strains. On the basis of the data sets, we find that the tolerance trait has a high heritability and that additive genetic variance dominates genetic variation of the trait. Segregation at five QTL detected has explained approximately 50% of phenotypic variation; in particular, the major QTL mapped on yeast chromosome 9 has accounted for a quarter of the phenotypic variation. We integrated the QTL analysis with the predicted candidacy of ethanol resistance genes and found that only a few of these candidates fall in the QTL regions.  相似文献   
46.
The Escherichia coli protein SlyD is a member of the FK-506-binding protein family of peptidylprolyl isomerases. In addition to its peptidylprolyl isomerase domain, SlyD is composed of a molecular chaperone domain and a C-terminal tail rich in potential metal-binding residues. SlyD interacts with the [NiFe]-hydrogenase accessory protein HypB and contributes to nickel insertion during biosynthesis of the hydrogenase metallocenter. This study examines the HypB-SlyD complex and its significance in hydrogenase activation. Protein variants were prepared to delineate the interface between HypB and SlyD. Complex formation requires the HypB linker region located between the high affinity N-terminal Ni(II) site and the GTPase domain of the protein. In the case of SlyD, the deletion of a short loop in the chaperone domain abrogates the interaction with HypB. Mutations in either protein that disrupt complex formation in vitro also result in deficient hydrogenase production in vivo, indicating that the contact between HypB and SlyD is important for hydrogenase maturation. Surprisingly, SlyD stimulates release of nickel from the high affinity Ni(II)-binding site of HypB, an activity that is also disrupted by mutations that affect complex formation. Furthermore, a SlyD truncation lacking the C-terminal metal-binding tail still interacts with HypB but is deficient in stimulating metal release and is not functional in vivo. These results suggest that SlyD could activate metal release from HypB during metallation of the [NiFe] hydrogenase.  相似文献   
47.
High-throughput studies of the 6,200 genes of Saccharomyces cerevisiae have provided valuable data resources. However, these resources require a return to experimental analysis to test predictions. An in-silico screen, mining existing interaction, expression, localization, and phenotype datasets was developed with the aim of selecting minimally characterized genes involved in meiotic DNA processing. Based on our selection procedure, 81 deletion mutants were constructed and tested for phenotypic abnormalities. Eleven (13.6%) genes were identified to have novel roles in meiotic DNA processes including DNA replication, recombination, and chromosome segregation. In particular, this analysis showed that Def1, a protein that facilitates ubiquitination of RNA polymerase II as a response to DNA damage, is required for efficient synapsis between homologues and normal levels of crossover recombination during meiosis. These characteristics are shared by a group of proteins required for Zip1 loading (ZMM proteins). Additionally, Soh1/Med31, a subunit of the RNA pol II mediator complex, Bre5, a ubiquitin protease cofactor and an uncharacterized protein, Rmr1/Ygl250w, are required for normal levels of gene conversion events during meiosis. We show how existing datasets may be used to define gene sets enriched for specific roles and how these can be evaluated by experimental analysis.  相似文献   
48.
Recognition of specific molecule signatures of microbes, including pathogens, induces innate immune responses in plants, as well as in animals. Analogously, a nematode pheromone, the ascaroside ascr#18, induces hallmark plant defences including activation of (a) mitogen‐activated protein kinases, (b) salicylic acid‐ and jasmonic acid‐mediated defence signalling pathways and (c) defence gene expression and provides protection to a broad spectrum of pathogens. Ascr#18 is a member of an evolutionarily conserved family of nematode signalling molecules and is the major ascaroside secreted by plant–parasitic nematodes. Here, we report the effects of ascr#18 on resistance in four of the major economically important crops: maize, rice, wheat and soybean to some of their associated pathogens. Treatment with low nanomolar to low micromolar concentrations of ascr#18 provided from partial to strong protection in seven of eight plant–pathogen systems tested with viruses, bacteria, fungi, oomycetes and nematodes. This research may have potential to improve agricultural sustainability by reducing use of potentially harmful agrochemicals and enhance food security worldwide.  相似文献   
49.
The retinal pigment epithelium (RPE) plays numerous critical roles in maintaining vision and this is underscored by the prevalence of degenerative blinding diseases like age-related macular degeneration (AMD), in which visual impairment is caused by progressive loss of RPE cells. In contrast to mammals, zebrafish possess the ability to intrinsically regenerate a functional RPE layer after severe injury. The molecular underpinnings of this regenerative process remain largely unknown yet hold tremendous potential for developing treatment strategies to stimulate endogenous regeneration in the human eye. In this study, we demonstrate that the mTOR pathway is activated in RPE cells post-genetic ablation. Pharmacological and genetic inhibition of mTOR activity impaired RPE regeneration, while mTOR activation enhanced RPE recovery post-injury, demonstrating that mTOR activity is essential for RPE regeneration in zebrafish. RNA-seq of RPE isolated from mTOR-inhibited larvae identified a number of genes and pathways dependent on mTOR activity at early and late stages of regeneration; amongst these were components of the immune system, which is emerging as a key regulator of regenerative responses across various tissue and model systems. Our results identify crosstalk between macrophages/microglia and the RPE, wherein mTOR activity is required for recruitment of macrophages/microglia to the RPE injury site. Macrophages/microglia then reinforce mTOR activity in regenerating RPE cells. Interestingly, the function of macrophages/microglia in maintaining mTOR activity in the RPE appeared to be inflammation-independent. Taken together, these data identify mTOR activity as a key regulator of RPE regeneration and link the mTOR pathway to immune responses in facilitating RPE regeneration.  相似文献   
50.
Identifying the subcellular localization of proteins is particularly helpful in the functional annotation of gene products. In this study, we use Machine Learning and Exploratory Data Analysis (EDA) techniques to examine and characterize amino acid sequences of human proteins localized in nine cellular compartments. A dataset of 3,749 protein sequences representing human proteins was extracted from the SWISS-PROT database. Feature vectors were created to capture specific amino acid sequence characteristics. Relative to a Support Vector Machine, a Multi-layer Perceptron, and a Naive Bayes classifier, the C4.5 Decision Tree algorithm was the most consistent performer across all nine compartments in reliably predicting the subcellular localization of proteins based on their amino acid sequences (average Precision=0.88; average Sensitivity=0.86). Furthermore, EDA graphics characterized essential features of proteins in each compartment. As examples, proteins localized to the plasma membrane had higher proportions of hydrophobic amino acids; cytoplasmic proteins had higher proportions of neutral amino acids; and mitochondrial proteins had higher proportions of neutral amino acids and lower proportions of polar amino acids. These data showed that the C4.5 classifier and EDA tools can be effective for characterizing and predicting the subcellular localization of human proteins based on their amino acid sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号