首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   577篇
  免费   62篇
  国内免费   4篇
  2024年   1篇
  2023年   7篇
  2022年   12篇
  2021年   24篇
  2020年   14篇
  2019年   16篇
  2018年   17篇
  2017年   17篇
  2016年   27篇
  2015年   47篇
  2014年   39篇
  2013年   51篇
  2012年   42篇
  2011年   56篇
  2010年   31篇
  2009年   29篇
  2008年   11篇
  2007年   32篇
  2006年   24篇
  2005年   12篇
  2004年   12篇
  2003年   15篇
  2002年   14篇
  2001年   15篇
  2000年   15篇
  1999年   12篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1994年   1篇
  1993年   3篇
  1992年   6篇
  1991年   6篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有643条查询结果,搜索用时 31 毫秒
631.
Ischemia are common conditions related to lack of blood supply to tissues. Depending on the ischemic sites, ischemia can cause different diseases, such as hindlimb ischemia, heart infarction and stroke. This study aims to evaluate how extracellular vesicles (EVs) derived from ETV2 transfected fibroblasts affect endothelial cell proliferation and neovascularization in a murine model of hindlimb ischemia. Human fibroblasts were isolated and cultured under standard conditions and expanded to the 3th passage before use in experiments. Human fibroblasts were transduced with a viral vector containing the ETV2 gene. Transduced cells were selected by puromycin treatment. These cells were further cultured for collection of EVs, which were isolated from culture supernatant. Following co-culture with endothelial cells, EVs were evaluated for their effect on endothelial cell proliferation and were directly injected into ischemic tissues of a murine model of hindlimb ischemia. The results showed that EVs could induce endothelial cell proliferation in vitro and improved neovascularization in a murine model of hindlimb ischemia. Our results suggest that EVs derived from ETV2-transfected fibroblasts can be promising non-cellular products for the regeneration of blood vessels.  相似文献   
632.
633.
Superhydrophobic titanium surfaces fabricated by femtosecond laser ablation to mimic the structure of lotus leaves were assessed for their ability to retain coccoid bacteria. Staphylococcus aureus CIP 65.8T, S. aureus ATCC 25923, S. epidermidis ATCC 14990T and Planococcus maritimus KMM 3738 were retained by the surface, to varying degrees. However, each strain was found to preferentially attach to the crevices located between the microscale surface features. The upper regions of the microscale features remained essentially cell-free. It was hypothesised that air entrapped by the topographical features inhibited contact between the cells and the titanium substratum. Synchrotron SAXS revealed that even after immersion for 50 min, nano-sized air bubbles covered 45% of the titanium surface. After 1 h the number of cells of S. aureus CIP 65.8T attached to the lotus-like titanium increased to 1.27 × 105 mm?2, coinciding with the replacement of trapped air by the incubation medium.  相似文献   
634.
635.
636.
Break‐induced replication (BIR) is a specialized homologous‐recombination pathway for DNA double‐strand break (DSB) repair, which often induces genome instability. In this study, we establish EGFP‐based recombination reporters to systematically study BIR in mammalian cells and demonstrate an important role of human PIF1 helicase in promoting BIR. We show that at endonuclease cleavage sites, PIF1‐dependent BIR is used for homology‐initiated recombination requiring long track DNA synthesis, but not short track gene conversion (STGC). We also show that structure formation‐prone AT‐rich DNA sequences derived from common fragile sites (CFS‐ATs) induce BIR upon replication stress and oncogenic stress, and PCNA‐dependent loading of PIF1 onto collapsed/broken forks is critical for BIR activation. At broken replication forks, even STGC‐mediated repair of double‐ended DSBs depends on POLD3 and PIF1, revealing an unexpected mechanism of BIR activation upon replication stress that differs from the conventional BIR activation model requiring DSB end sensing at endonuclease‐generated breaks. Furthermore, loss of PIF1 is synthetically lethal with loss of FANCM, which is involved in protecting CFS‐ATs. The breast cancer‐associated PIF1 mutant L319P is defective in BIR, suggesting a direct link of BIR to oncogenic processes.  相似文献   
637.
638.
Physarum polycephalum is a plasmodial slime mold. One of the trophic stages in the life cycle of this organism is a plasmodium. In submerged culture, plasmodia are fragmented into microplasmodia. The latter both lack cell walls and are capable of rapid growth. There has been limited information on the effects of medium composition on the growth and lipid accumulation of microplasmodia. In this study, optimization of medium components by response surface methodology showed that tryptone and yeast extract concentrations had the most significant effects on lipid and biomass production; significant synergistic interactions between glucose and tryptone concentration on these responses were also recorded. The optimal medium was composed of 20 g/L of glucose, 6.59 g/L of tryptone, and 3.0 g/L of yeast extract. This medium yielded 13.86 g/L of dry biomass and 1.97 g/L of lipids. These amounts are threefold higher than those of the American Type Culture Collection (ATCC) medium. In addition, biomass and lipid production reached maximal values between only 4 and 5 days. Fatty acid compositions analysis by gas chromatography-mass spectrometer (GC–MS) revealed that P. polycephalum lipids consisted mainly of oleic acid (40.5%), linoleic acid (10%), and octadecynoic (15.8%). This is the first report on the fatty acid composition of P. polycephalum microplasmodia. These results suggest that the biomass of microplasmodia could be used as a source of material for direct conversion into biodiesel because of the absence of cell walls or it could also be used as a supplemental source of beneficial fatty acids for humans, albeit with some further evaluation needed.  相似文献   
639.
Adenosma bracteosum and Vitex negundo are natural sources of methoxylated flavonoids. Little is known about the α-glucosidase inhibition of multi-methoxylated flavonoid derivatives. Eighteen natural flavonoids were isolated from A. bracteosum and V. negundo. Seven halogenated derivatives were synthesized. Their chemical structures were elucidated by extensive NMR analysis and high-resolution mass spectroscopy as well as comparisons in literature. All compounds were evaluated for their α-glucosidase inhibition. Most compounds showed good activity with IC50 values ranging from 16.7 to 421.8 μM. 6,8-Dibromocatechin was the most active compound with an IC50 value of 16.7 μM. A molecular docking study was conducted, indicating that those compounds are potent α-glucosidase inhibitors.  相似文献   
640.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号