首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12749篇
  免费   1153篇
  国内免费   220篇
  2023年   93篇
  2022年   164篇
  2021年   340篇
  2020年   217篇
  2019年   228篇
  2018年   290篇
  2017年   243篇
  2016年   361篇
  2015年   596篇
  2014年   572篇
  2013年   726篇
  2012年   861篇
  2011年   807篇
  2010年   503篇
  2009年   484篇
  2008年   660篇
  2007年   582篇
  2006年   506篇
  2005年   474篇
  2004年   512篇
  2003年   450篇
  2002年   417篇
  2001年   402篇
  2000年   338篇
  1999年   311篇
  1998年   149篇
  1997年   97篇
  1996年   102篇
  1995年   129篇
  1994年   95篇
  1993年   89篇
  1992年   171篇
  1991年   195篇
  1990年   139篇
  1989年   163篇
  1988年   140篇
  1987年   133篇
  1986年   111篇
  1985年   136篇
  1984年   107篇
  1983年   88篇
  1982年   59篇
  1981年   65篇
  1980年   62篇
  1979年   70篇
  1978年   72篇
  1977年   63篇
  1975年   53篇
  1974年   49篇
  1973年   49篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The components of the cutaneous envelope, the epidermis and the dermis, change in response to aging or environmental stress factors. The fibroblasts involved in maintaining skin tone are the main targets. Nacre, mother of pearl, from Pinctada maxima, which can stimulate and regulate bone forming cells, was implanted in the dermis of rats to test its action on the skin fibroblasts. This report describes the effect of nacre on the skin fibroblast recruitment and physiological activity. It resulted in enhanced extracellular matrix synthesis and the production of components implicated in cell to cell adhesion and communication (such as decorine) and in tissue regeneration (type I and type III collagens). The nacre implant produced a well vascularized tissue. The physiological conditions in the region around the implant are thus those required for the positive interactions between the dermis and epidermis which are fundamental for the physiological function of the skin.  相似文献   
992.
993.
994.
Tolerance to peripheral body antigens involves multiple mechanisms, namely T-cell-mediated suppression of potentially autoimmune cells. Recent in vivo and in vitro evidence indicates that regulatory T cells suppress the response of effector T cells by a mechanism that requires the simultaneous conjugation of regulatory and effector T cells with the same antigen-presenting cell (APC). Despite this strong requirement, it is not yet clear what happens while both cells are conjugated. Several hypotheses are discussed in the literature. Suppression may result from simple competition of regulatory and effector cells for activation resources on the APC; regulatory T cells may deliver an inhibitory signal to effector T cells in the same conjugate; or effector T cells may acquire the regulatory phenotype during their interaction with regulatory T cells. The present article tries to further our understanding of T-cell-mediated suppression, and to narrow-down the number of candidate mechanisms. We propose the first general formalism describing the formation of multicellular conjugates of T cells and APCs. Using this formalism we derive three particular models, representing alternative mechanisms of T-cell-mediated suppression. For each model, we make phase plane and bifurcation analysis, and identify their pros and cons in terms of the relationship with the large body of experimental observations on T-cell-mediated suppression. We argue that accounting for the quantitative details of adoptive transfers of tolerance requires models with bistable regimes in which either regulatory cells or effectors cells dominate the steady state. From this analysis, we conclude that the most plausible mechanism of T-cell-mediated suppression requires that regulatory T cells actively inhibit the growth of effector T cells, and that the maintenance of the population of regulatory T cells is dependent on the effector T cells. The regulatory T cell population may depend on a growth factor produced by effector T cells and/or on a continuous differentiation of effector cells to the regulatory phenotype.  相似文献   
995.
Acanthocephala (thorny-headed worms) is a phylum of endoparasites of vertebrates and arthropods, included among the most phylogenetically basal tripoblastic pseudocoelomates. The phylum is divided into three classes: Archiacanthocephala, Palaeacanthocephala, and Eoacanthocephala. These classes are distinguished by morphological characters such as location of lacunar canals, persistence of ligament sacs in females, number and type of cement glands in males, number and size of proboscis hooks, host taxonomy, and ecology. To understand better the phylogenetic relationships within Acanthocephala, and between Acanthocephala and Rotifera, we sequenced the nearly complete 18S rRNA genes of nine species from the three classes of Acanthocephala and four species of Rotifera from the classes Bdelloidea and Monogononta. Phylogenetic relationships were inferred by maximum-likelihood analyses of these new sequences and others previously determined. The analyses showed that Acanthocephala is the sister group to a clade including Eoacanthocephala and Palaeacanthocephala. Archiacanthocephala exhibited a slower rate of evolution at the nucleotide level, as evidenced by shorter branch lengths for the group. We found statistically significant support for the monophyly of Rotifera, represented in our analysis by species from the clade Eurotatoria, which includes the classes Bdelloidea and Monogononta. Eurotatoria also appears as the sister group to Acanthocephala. Received: 12 October 1999 / Accepted: 8 February 2000  相似文献   
996.
Nef is a myristoylated protein of 27 to 35 kDa that is conserved in primate lentiviruses. In vivo, Nef is required for high viral load and full pathological effects. In vitro, Nef has at least four activities: induction of CD4 and major histocompatibility complex (MHC) class I downregulation, enhancement of viral infectivity, and alteration of T-cell activation pathways. We previously reported that the Nef protein from human immunodeficiency virus type 1 interacts with a novel human thioesterase (hTE). In the present study, by mutational analysis, we identified a region of the Nef core, extending from the residues D108 to W124, that is involved both in Nef-hTE interaction and in Nef-induced CD4 downregulation. This region of Nef is located on the oligomer interface and is in close proximity to the putative CD4 binding site. One of the mutants carrying a mutation in this region, targeted to the conserved residue D123, was also found to be defective in two other functions of Nef, MHC class I downmodulation and enhancement of viral infectivity. Furthermore, mutation of this residue affected the ability of Nef to form dimers, suggesting that the oligomerization of Nef may be critical for its multiple functions.  相似文献   
997.
998.
The human immunodeficiency virus type 1 Nef protein alters the post-Golgi stages of major histocompatibility complex class I (MHC-I) biogenesis. Presumed mechanisms involve the disclosure of a cryptic tyrosine-based sorting signal (YSQA) located in the cytoplasmic tail of HLA-A and -B heavy chains. We changed this signal for a prototypic sorting motif (YSQI or YSQL). Modified HLA-A2 molecules, termed A2-endo, displayed constitutively low surface levels and accumulated in a region close to or within the Golgi apparatus, a behavior reminiscent of wild-type HLA-A2 in Nef-expressing cells. However, several lines of evidence indicate that the action of prototypic signals on MHC-I trafficking differs from that of Nef. Internalization of surface A2-endo was more rapid and was associated with efficient recycling to the surface. A transdominant-negative mutant of dynamin-1 inhibited A2-endo constitutive internalization and Nef-induced CD4 down-regulation, whereas it did not affect the activity of Nef on MHC-I. Moreover, trafficking of A2-endo was still affected by the viral protein, indicating additive effects of prototypic signals and Nef. Therefore, distinct trafficking pathways regulate clathrin-dependent and Nef-induced MHC-I modulation.  相似文献   
999.
Logani S  Chen MC  Tran T  Le T  Raffa RB 《Life sciences》2000,67(12):1389-1396
Neuronal hypoxia results from a variety of cerebrovascular accidents or 'normal' age-associated anatomic changes. The consequences vary from mild deficits in neurologic function to massive neuropathology. Present pharmacotherapeutic therapy is not ideal. Two apparently disparate approaches to the search for better treatment or prevention-one involving reassessment of herbal remedies as 'alternative' medicine and the other one involving the desirability of increased structural diversity in HTS (high-throughput screening) libraries and as combinatorial chemistry templates-have converged in a rekindling of interest and a reevaluation of the pharmacologic properties of substances such as extract from the leaves of Ginkgo biloba Linne (form. Salisburia adiantifolia Sm.). There are reports of positive results from a small number of controlled clinical trials (albeit with small numbers of patients) sufficient to suggest that 'Ginkgo' might have therapeutic benefit in some situations or subset of patients. The pharmacologic mechanism by which Ginkgo might be able to provide the observed effect is not clear. However, it is believed that the flavonoid and terpenoid components of Ginkgo extract might produce beneficial therapeutic effects through mechanisms acting separately or in concert, such as the antagonism of PAF (platelet activating factor), antioxidant and metabolic actions, and effects on neurotransmitters. These mechanisms are reviewed in this article.  相似文献   
1000.
The outer membrane protein, OmpC, from Escherichia coli was used to display metal-binding poly-histidine peptides on the surface of this bacterium. SDS-PAGE analysis of outer membrane protein preparations confirmed the expression of the metal-binding epitopes inserted in position 162 of the mature OmpC protein. Display of these epitopes was confirmed by epifluorescence microscopy of cells bound to Ni2+-NTA-agarose beads and metal adsorption experiments. The cells harboring one or two copies of the metal binding epitope were able to adsorb 3 to 6 times more Zn2+ (13.8 mol g–1 cell), Fe3+ (35.3 mol g–1 cell), and Ni2+ (9.9 mol g–1 cell) metallic ions than control cells expressing the wild-type OmpC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号