首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24748篇
  免费   2597篇
  国内免费   328篇
  2023年   129篇
  2022年   220篇
  2021年   500篇
  2020年   356篇
  2019年   405篇
  2018年   512篇
  2017年   445篇
  2016年   662篇
  2015年   985篇
  2014年   1008篇
  2013年   1225篇
  2012年   1465篇
  2011年   1391篇
  2010年   891篇
  2009年   868篇
  2008年   1133篇
  2007年   1041篇
  2006年   900篇
  2005年   832篇
  2004年   853篇
  2003年   754篇
  2002年   702篇
  2001年   1522篇
  2000年   1309篇
  1999年   1016篇
  1998年   359篇
  1997年   315篇
  1996年   272篇
  1995年   273篇
  1994年   244篇
  1993年   194篇
  1992年   533篇
  1991年   513篇
  1990年   420篇
  1989年   380篇
  1988年   333篇
  1987年   268篇
  1986年   257篇
  1985年   243篇
  1984年   171篇
  1983年   152篇
  1982年   89篇
  1981年   93篇
  1979年   108篇
  1978年   101篇
  1977年   84篇
  1975年   88篇
  1973年   88篇
  1972年   83篇
  1971年   85篇
排序方式: 共有10000条查询结果,搜索用时 959 毫秒
21.
22.
Alternative splicing of 3′-terminal exons plays a critical role in gene expression by producing mRNA with distinct 3′-untranslated regions that regulate their fate and their expression. The Xenopus α-tropomyosin pre-mRNA possesses a composite internal/3′-terminal exon (exon 9A9′) that is differentially processed depending on the embryonic tissue. Exon 9A9′ is repressed in non-muscle tissue by the polypyrimidine tract binding protein, whereas it is selected as a 3′-terminal or internal exon in myotomal cells and adult striated muscles, respectively. We report here the identification of an intronic regulatory element, designated the upstream terminal exon enhancer (UTE), that is required for the specific usage of exon 9A9′ as a 3′-terminal exon in the myotome. We demonstrate that polypyrimidine tract binding protein prevents the activity of UTE in non-muscle cells, whereas a subclass of serine/arginine rich (SR) proteins promotes the selection of exon 9A9′ in a UTE-dependent way. Morpholino-targeted blocking of UTE in the embryo strongly reduced the inclusion of exon 9A9′ as a 3′-terminal exon in the endogenous mRNA, demonstrating the function of UTE under physiological circumstances. This strategy allowed us to reveal a splicing pathway that generates a mRNA with no in frame stop codon and whose steady-state level is translation-dependent. This result suggests that a non-stop decay mechanism participates in the strict control of the 3′-end processing of the α-tropomyosin pre-mRNA.  相似文献   
23.
24.
Cyclizations of alkylhydrazines with N-acyl-S-methylisothioureas, readily synthesized from acyl chlorides, sodium thioisocyanate, dialkylamines then methyl iodide in a one-pot reaction, gave 1-alkyl-3-dialkylamino-5-phenyltriazoles 7 as major products. The regioisomers were assigned through the use of NOE NMR experiments. While bearing a N-bis(cyclopropyl)methyl-N-propylamino group, this series of compounds shows very good binding affinity on the human CRF1 receptor. Among them, 1-methyl-3-[N-bis(cyclopropyl)methyl-N-propylamino]-5-(2,4-dichlorophenyl)-1H-[1,2,4]triazole 7a had the best binding affinity for the CRF1 receptor (Ki=9 nM).  相似文献   
25.
26.
Q Ruan  K Ruan  C Balny  M Glaser  W W Mantulin 《Biochemistry》2001,40(48):14706-14714
Adenylate kinase (AKe) from E. coli is a small, single-chain, monomeric enzyme with no tryptophan and a single cysteine residue. We have constructed six single-Trp mutants of AKe to facilitate optical studies of these proteins and to specifically examine the interrelationship between their structure, function, dynamics, and folding reactions. In this study, the effects of hydrostatic pressure on the folding reactions of AKe were studied. The native structure of AKe was transformed to a non-native, yet pressure stable, conformation by hydrostatic pressure of about 300 MPa. This pressure lability of AKe is rather low for a monomeric protein and presumably may be attributed to substantial conformational flexibility and a correspondingly large volume change. The refolding of AKe after pressure-induced denaturation was reversible under ambient conditions. At low temperature (near 0 degrees C), the refolding process of pressure-exposed AKe mutants displayed a significant hysteresis. The observation of a slow refolding rate in the 193 region and a faster folding rate around the active site (86, 41, 73 regions) leads us to suggest that in the folding process, priority is afforded to functional regions. The slow structural return of the 193 region apparently does not hinder the more rapid return of enzymatic activity of AKe. Circular dichroism studies on the pressure-denatured Y193W mutant show that the secondary structure (calculated from far-UV spectra) returned at a rapid rate, but the tertiary structure alignment (calculated from near-UV spectra) around the 193 region occurred more slowly at rates comparable to those detected by fluorescence intensity. Denaturation of AKe mutants by guanidine hydrochloride and subsequent refolding experiments were also consistent with a much slower refolding process around the 193 region than near the active site. Fast refolding kinetic traces were observed in F86W, S41W, and A73W mutants using a fluorescence detection stopped-flow rapid mixing device, while only a slow kinetic trace was observed for Y193W. The results suggest that the differences in regional folding rates of AKe are not derived from the specific denaturation methods, but rather are inherent in the structural organization of the protein.  相似文献   
27.
28.
Three-dimensional scalar pressure distributions were measured in solid tissue near bony prominences in vitro in meat and in vivo in pigs using silicon pressure sensors. Data are in accord with previous theoretical models and indicate that pressure is three to five times higher internally near a bony prominence than it is at the skin over the prominence. Pressure sores are thus thought to begin internally; by the time they are evident at the skin, the sore has worked its way completely from bone to skin. This conclusion is in accord with previous clinical data. Future measurement of local vector forces is needed to fully characterize the force distribution in vivo.  相似文献   
29.
A cytosolic, macromolecular factor required for the cholera toxin-dependent activation of pigeon erythrocyte adenylate cyclase and cholera toxin-dependent ADP-ribosylation of a membrane-bound 43 000 dalton polypeptide has been purified 1100-fold from horse erythrocyte cytosol using organic solvent precipitation and heat treatment. This factor, 13 000 daltons, does not absorb to anionic or cationic exchange resins, is sensitive to trypsin or 10% trichloroacetic acid and is not extractable by diethyl ether. Activation of adenylate cyclase by cholera toxin requires the simultaneous presence of ATP (including possible trace GTP), NAD+, dithiothreitol, cholera toxin, membranes and the cytosolic macromolecular factor. Reversal of cholera toxin activation of adenylate cyclase, and of the toxin-dependent ADP-ribosylation, requires the presence of the cytosolic factor. The ability of the purified cytosolic factor to influence the hormonal sensitivity of liver membrane adenylate cyclase may provide clues to its physiological functions.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号