首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   542篇
  免费   49篇
  2021年   6篇
  2016年   5篇
  2015年   18篇
  2014年   16篇
  2013年   25篇
  2012年   19篇
  2011年   16篇
  2010年   24篇
  2009年   20篇
  2008年   24篇
  2007年   18篇
  2006年   17篇
  2005年   17篇
  2004年   23篇
  2003年   14篇
  2002年   11篇
  2001年   10篇
  2000年   9篇
  1999年   10篇
  1998年   11篇
  1996年   6篇
  1995年   5篇
  1994年   7篇
  1993年   5篇
  1992年   8篇
  1991年   10篇
  1990年   5篇
  1989年   15篇
  1988年   13篇
  1987年   12篇
  1986年   10篇
  1985年   13篇
  1984年   6篇
  1983年   11篇
  1982年   4篇
  1981年   7篇
  1980年   7篇
  1979年   7篇
  1978年   4篇
  1977年   14篇
  1976年   8篇
  1975年   8篇
  1974年   10篇
  1973年   12篇
  1972年   10篇
  1971年   5篇
  1969年   5篇
  1968年   6篇
  1967年   5篇
  1966年   5篇
排序方式: 共有591条查询结果,搜索用时 15 毫秒
501.

Background

Visceral leishmaniasis in Brazil is caused by the protozoan Leishmania (Leishmania) chagasi and it is transmitted by sandfly of the genus Lutzomyia. Dogs are an important domestic reservoir, and control of the transmission of visceral leishmaniasis (VL) to humans includes the elimination of infected dogs. However, though dogs are considered to be an important element in the transmission cycle of Leishmania, the identification of infected dogs representing an immediate risk for transmission has not been properly evaluated. Since it is not possible to treat infected dogs, they are sacrificed when a diagnosis of VL is established, a measure that is difficult to accomplish in highly endemic areas. In such areas, parameters that allow for easy identification of reservoirs that represents an immediate risk for transmission is of great importance for the control of VL transmission. In this study we aimed to identify clinical parameters, reinforced by pathological parameters that characterize dogs with potential to transmit the parasite to the vector.

Results

The major clinical manifestations of visceral leishmaniasis in dogs from an endemic area were onicogriphosis, skin lesions, conjunctivitis, lymphadenopathy, and weight loss. The transmission potential of these dogs was assessed by xenodiagnosis using Lutzomyia longipalpis. Six of nine symptomatic dogs were infective to Lutzomyia longipalpis while none of the five asymptomatic dogs were infective to the sandfly. Leishmania amastigotes were present in the skin of all clinically symptomatic dogs, but absent in asymptomatic dogs. Higher parasite loads were observed in the ear and ungueal region, and lower in abdomen. The inflammatory infiltrate was more intense in the ears and ungueal regions of both symptomatic and asymptomatic dogs. In clinically affected dogs in which few or none Leishmania amastigotes were observed, the inflammatory infiltrate was constituted mainly of lymphocytes and macrophages. When many parasites were present, the infiltrate was also comprised of lymphocytes and macrophages, as well as a larger quantity of polymorphonuclear neutrophils (PMNs).

Conclusion

Dogs that represent an immediate risk for transmission of Leishmania in endemic areas present clinical manifestations that include onicogriphosis, skin lesions, conjunctivitis, lymphadenopathy, and weight loss. Lymphadenopathy in particular was a positive clinical hallmark since it was closely related to the positive xenodiagnosis.
  相似文献   
502.
The unique case of two sisters with symptoms of RTT and two quite distinct, novel, and apparently de novo microdeletions of the MECP2 gene is described. One sister possessed an 18 base-pair (bp) deletion (c.1155_1172del18) within the deletion hotspot region of exon 4, whereas the other sister exhibited a 43 bp deletion at a different location in the same exon (c.1448_1461del14+29). Although these lesions occurred on the same paternally-derived X chromosome, this is probably due to chance co-occurrence owing to the relatively high mutation rate of the MECP2 gene rather than to a constitutional mutator phenotype.  相似文献   
503.
504.
IgASE1, a C18-Delta9-polyunsaturated fatty acid-specific fatty acid elongase component from Isochrysis galbana, contains a variant histidine box (his-box) with glutamine replacing the first histidine of the conserved histidine-rich motif present in all other known equivalent proteins. The importance of glutamine and other variant amino acid residues in the his-box of IgASE1 was determined by site-directed mutagenesis. Results showed that all the variation in amino acid sequence between this motif in IgASE1 and the consensus sequences of other elongase components was required for optimum enzyme activity. The substrate specificity was shown to be unaffected by these changes suggesting that components of the his-box are not directly responsible for substrate specificity.  相似文献   
505.
IgA immunoblasts can seed both intestinal and nonintestinal mucosal sites following localized mucosal immunization, an observation that has led to the concept of a common mucosal immune system. In this study, we demonstrate that the mucosae-associated epithelial chemokine, MEC (CCL28), which is expressed by epithelia in diverse mucosal tissues, is selectively chemotactic for IgA Ab-secreting cells (ASC): MEC attracts IgA- but not IgG- or IgM-producing ASC from both intestinal and nonintestinal lymphoid and effector tissues, including the intestines, lungs, and lymph nodes draining the bronchopulmonary tree and oral cavity. In contrast, the small intestinal chemokine, TECK (CCL25), attracts an overlapping subpopulation of IgA ASC concentrated in the small intestines and its draining lymphoid tissues. Surprisingly, T cells from mucosal sites fail to respond to MEC. These findings suggest a broad and unifying role for MEC in the physiology of the mucosal IgA immune system.  相似文献   
506.
Interleukin-10 (IL-10) is a cytokine that seems to function as a downregulator of the innate (nonadaptive) immune system. Approximately three-quarters of interindividual variability in human IL-10 levels has been attributed to genetic variation, and there is evidence suggesting a potential role for IL-10 in a range of human diseases. To provide a basis for haplotype analysis and future disease association studies, we characterized genetic variation in IL10 by sequencing all exons, and 2.5 kb of the 5'- and the 3'-flanking region in a panel of DNA samples from 24 African Americans, 23 European Americans, and 24 Hispanic Americans. The region sequenced was found to contain 28 single-nucleotide polymorphisms (SNPs), 16 with frequency >2% and 14 with frequency >5%. All SNPs with frequency >5% were present in subjects from all three populations. No SNP caused amino acid changes. Differences in pairwise linkage-disequilibrium (LD) patterns and in SNP and haplotype frequency distributions among the three populations may be of potential importance for disease association studies.  相似文献   
507.
508.
509.
A cDNA isolated from the prymnesiophyte micro-alga Isochrysis galbana, designated IgASE1, encodes a fatty acid elongating component that is specific for linoleic acid (C18:2n-6) and alpha-linolenic acid (C18:3n-3). Constitutive expression of IgASE1 in Arabidopsis resulted in the accumulation of eicosadienoic acid (EDA; C20:2n-6) and eicosatrienoic acid (ETrA; C20:3n-3) in all tissues examined, with no visible effects on plant morphology. Positional analysis of the various lipid classes indicated that these novel fatty acids were largely excluded from the sn-2 position of chloroplast galactolipids and seed triacylglycerol, whereas they were enriched in the same position in phosphatidylcholine. EDA and ETrA are precursors of arachidonic acid (C20:4n-6), eicosapentaenoic acid (C20:5n-3), and docosahexaenoic acid (C22:6n-3) synthesized via the so-called omega6 Delta8 desaturase and omega3 Delta8 desaturase biosynthetic pathways, respectively. The synthesis of significant quantities of EDA and ETrA in a higher plant is therefore a key step in the production of very long chain polyunsaturated fatty acid in oil-seed species. The results are further discussed in terms of prokaryotic and eukaryotic pathways of lipid synthesis in plants.  相似文献   
510.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号