首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   24篇
  2023年   2篇
  2022年   5篇
  2021年   1篇
  2020年   4篇
  2019年   5篇
  2018年   9篇
  2017年   1篇
  2016年   6篇
  2015年   10篇
  2014年   11篇
  2013年   13篇
  2012年   18篇
  2011年   20篇
  2010年   18篇
  2009年   12篇
  2008年   21篇
  2007年   17篇
  2006年   12篇
  2005年   13篇
  2004年   14篇
  2003年   6篇
  2002年   10篇
  2001年   2篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1971年   1篇
  1970年   3篇
  1969年   3篇
  1968年   1篇
排序方式: 共有271条查询结果,搜索用时 15 毫秒
121.
Progressive rod-cone degeneration (prcd) is a late-onset, autosomal recessive photoreceptor degeneration of dogs and a homolog for some forms of human retinitis pigmentosa (RP). Previously, the disease-relevant interval was reduced to a 106-kb region on CFA9, and a common phenotype-specific haplotype was identified in all affected dogs from several different breeds and breed varieties. Screening of a canine retinal EST library identified partial cDNAs for novel candidate genes in the disease-relevant interval. The complete cDNA of one of these, PRCD, was cloned in dog, human, and mouse. The gene codes for a 54-amino-acid (aa) protein in dog and human and a 53-aa protein in the mouse; the first 24 aa, coded for by exon 1, are highly conserved in 14 vertebrate species. A homozygous mutation (TGC --> TAC) in the second codon shows complete concordance with the disorder in 18 different dog breeds/breed varieties tested. The same homozygous mutation was identified in a human patient from Bangladesh with autosomal recessive RP. Expression studies support the predominant expression of this gene in the retina, with equal expression in the retinal pigment epithelium, photoreceptor, and ganglion cell layers. This study provides strong evidence that a mutation in the novel gene PRCD is the cause of autosomal recessive retinal degeneration in both dogs and humans.  相似文献   
122.
Canine progressive rod-cone degeneration (prcd) is a retinal disease previously mapped to a broad, gene-rich centromeric region of canine chromosome 9. As allelic disorders are present in multiple breeds, we used linkage disequilibrium (LD) to narrow the approximately 6.4-Mb interval candidate region. Multiple dog breeds, each representing genetically isolated populations, were typed for SNPs and other polymorphisms identified from BACs. The candidate region was initially localized to a 1.5-Mb zero recombination interval between growth factor receptor-bound protein 2 (GRB2) and SEC14-like 1 (SEC14L). A fine-scale haplotype of the region was developed, which reduced the LD interval to 106 kb and identified a conserved haplotype of 98 polymorphisms present in all prcd-affected chromosomes from 14 different dog breeds. The findings strongly suggest that a common ancestor transmitted the prcd disease allele to many of the modern dog breeds and demonstrate the power of the LD approach in the canine model.  相似文献   
123.
The essential micronutrient selenium is found in proteins as selenocysteine (Sec), the only genetically encoded amino acid whose biosynthesis occurs on its cognate tRNA in humans. In the final step of selenocysteine formation, the essential enzyme SepSecS catalyzes the conversion of Sep-tRNA to Sec-tRNA. We demonstrate that SepSecS mutations cause autosomal-recessive progressive cerebellocerebral atrophy (PCCA) in Jews of Iraqi and Moroccan ancestry. Both founder mutations, common in these two populations, disrupt the sole route to the biosynthesis of the 21st amino acid, Sec, and thus to the generation of selenoproteins in humans.  相似文献   
124.
Recent studies on the diazotrophic cyanobacterium Trichodesmium erythraeum (IMS101) showed that increasing CO2 partial pressure (pCO2) enhances N2 fixation and growth. Significant uncertainties remain as to the degree of the sensitivity to pCO2, its modification by other environmental factors, and underlying processes causing these responses. To address these questions, we examined the responses of Trichodesmium IMS101 grown under a matrix of low and high levels of pCO2 (150 and 900 μatm) and irradiance (50 and 200 μmol photons m−2 s−1). Growth rates as well as cellular carbon and nitrogen contents increased with increasing pCO2 and light levels in the cultures. The pCO2-dependent stimulation in organic carbon and nitrogen production was highest under low light. High pCO2 stimulated rates of N2 fixation and prolonged the duration, while high light affected maximum rates only. Gross photosynthesis increased with light but did not change with pCO2. HCO3 was identified as the predominant carbon source taken up in all treatments. Inorganic carbon uptake increased with light, but only gross CO2 uptake was enhanced under high pCO2. A comparison between carbon fluxes in vivo and those derived from 13C fractionation indicates high internal carbon cycling, especially in the low-pCO2 treatment under high light. Light-dependent oxygen uptake was only detected under low pCO2 combined with high light or when low-light-acclimated cells were exposed to high light, indicating that the Mehler reaction functions also as a photoprotective mechanism in Trichodesmium. Our data confirm the pronounced pCO2 effect on N2 fixation and growth in Trichodesmium and further show a strong modulation of these effects by light intensity. We attribute these responses to changes in the allocation of photosynthetic energy between carbon acquisition and the assimilation of carbon and nitrogen under elevated pCO2. These findings are supported by a complementary study looking at photosynthetic fluorescence parameters of photosystem II, photosynthetic unit stoichiometry (photosystem I:photosystem II), and pool sizes of key proteins in carbon and nitrogen acquisition.Human-induced climate change will significantly alter the marine environment within the next century and beyond. Future scenarios predict an increase from currently approximately 380 to about 750 to 1,000 μatm CO2 partial pressure (pCO2) in the atmosphere until the end of this century (Raven et al., 2005; Raupach et al., 2007). As the ocean takes up this anthropogenic CO2, dissolved inorganic carbon (DIC) in the surface ocean increases while the pH decreases (Wolf-Gladrow et al., 1999). Rising global temperatures will increase surface ocean stratification, which may affect the light regime in the upper mixed layer as well as nutrient input from deeper waters (Doney, 2006). Uncertainties remain regarding both the magnitude of the physicochemical changes and the biological responses of organisms, including species and populations of the oceanic primary producers at the basis of the food webs.In view of potential ecological implications and feedbacks on climate, several studies have examined pCO2 sensitivity in phytoplankton key species (Burkhardt and Riebesell, 1997; Riebesell et al., 2000; Rost et al., 2003; Tortell et al., 2008). Pronounced responses to elevated pCO2 were observed in N2-fixing cyanobacteria (Barcelos é Ramos et al., 2007; Hutchins et al., 2007; Levitan et al., 2007; Fu et al., 2008; Kranz et al., 2009), which play a vital role in marine ecosystems by providing a new source of biologically available nitrogen species to otherwise nitrogen-limited regions. Recent studies focused on the impact of different environmental factors on the filamentous Trichodesmium species, which is known for high abundance and the formation of massive blooms in tropical and subtropical areas (Capone et al., 2005; Mahaffey et al., 2005). Higher pCO2 levels stimulated growth rates, biomass production, and N2 fixation (Hutchins et al., 2007; Levitan et al., 2007; Kranz et al., 2009) and affected inorganic carbon acquisition of the cells (Kranz et al., 2009). While elevated sea surface temperatures are predicted to shift the spatial distribution of Trichodesmium species toward higher latitudes (Breitbarth et al., 2007), the combined effects of pCO2 and temperature may favor this species and extend its niche even farther (Hutchins et al., 2007; Levitan et al., 2010a). An increase in the average light intensity, caused by the predicted shoaling of the upper mixed layer, may further stimulate photosynthesis and thus growth and N2 fixation of Trichodesmium (Breitbarth et al., 2008). To our knowledge, the combined effects of light and pCO2 have not been studied yet, although these environmental factors are likely to influence photosynthesis and other key processes in Trichodesmium.To understand the responses of an organism to changes in environmental conditions, metabolic processes must be studied. In Trichodesmium, photosynthetically generated energy (ATP and NADPH) is primarily used for the fixation of CO2 in the Calvin-Benson cycle. A large proportion of this energy, however, is also required for the process of N2 fixation via nitrogenase and for the operation of a CO2-concentrating mechanism (CCM). The latter involves active uptake of inorganic carbon, which functions to increase the rate of carboxylation reaction mediated by Rubisco. This ancient and highly conserved enzyme is characterized by low affinities for its substrate CO2 and a susceptibility to a competing reaction with oxygen (O2) as substrate (Badger et al., 1998); the latter initiates photorespiration. As cyanobacterial Rubisco possesses one of the lowest CO2 affinities among phytoplankton (Badger et al., 1998), a considerable amount of resources have to be invested to achieve sufficient rates of carbon fixation and to avoid photorespiration. A first step toward a mechanistic understanding of responses in Trichodesmium has been taken by Levitan et al. (2007), focusing on pCO2 dependency of nitrogenase activity and photosynthesis. Subsequently, Kranz et al. (2009) described variations in CCM efficiency with pCO2 and suggested that the observed plasticity in CCM regulation allowed energy reallocation under high pCO2, which may explain the observed pCO2-dependent changes in nitrogenase activity, growth, and elemental composition (Barcelos é Ramos et al., 2007; Hutchins et al., 2007; Levitan et al., 2007).In this study, we measured growth responses as well as metabolic key processes in Trichodesmium erythraeum (IMS101) under environmental conditions that likely alter the energy budget and/or energy allocation of the cell. Cultures were acclimated to a matrix of low and high pCO2 (150 and 900 μatm) at two different light intensities (50 and 200 μmol photons m−2 s−1). For each of the four treatments, changes in growth rates, elemental ratios, and the accumulation of particulate carbon and nitrogen were measured. Metabolic processes (gross photosynthesis, CCM activity, and O2 uptake) were obtained by means of membrane-inlet mass spectrometry (MIMS), while N2 fixation was detected by gas chromatography. As these processes may vary over the diurnal cycle in Trichodesmium (Berman-Frank et al., 2001; Kranz et al., 2009), measurements were performed in the morning and around midday. The results on metabolic processes were accompanied by measurements of the fluorescence of PSII, ratios of the photosynthetic units (PSI:PSII), and pool sizes of key proteins involved in carbon and nitrogen fixation as well as assimilation (Levitan et al., 2010b).  相似文献   
125.
A mesoscale dissipative particle dynamics model of single wall carbon nanotubes (CNTs) is designed and demonstrated. The coarse-grained model is produced by grouping together carbon atoms and by bonding the new lumped particles through pair and triplet forces. The mechanical properties of the simulated tube are determined by the bonding forces, which are derived by virtual experiments. Through the introduction of van der Waals interactions, tube–tube interactions were studied. Owing to the reduced number of particles, this model allows the simulation of relatively large systems. The applicability of the presented scheme to model CNT based mechanical devices is discussed.  相似文献   
126.
The ubiquitin-proteasome system catalyzes the degradation of intracellular proteins. Although ubiquitination of proteins determines their stabilities, there is growing evidence that proteasome function is also regulated. We report the functional characterization of a conserved proteasomal regulatory complex. We identified DmPI31 as a binding partner of the F box protein Nutcracker, a component of an SCF ubiquitin ligase (E3) required for caspase activation during sperm differentiation in Drosophila. DmPI31 binds Nutcracker via a conserved mechanism that is also used by mammalian FBXO7 and PI31. Nutcracker promotes DmPI31 stability, which is necessary for caspase activation, proteasome function, and sperm differentiation. DmPI31 can activate 26S proteasomes in vitro, and increasing DmPI31 levels suppresses defects caused by diminished proteasome activity in vivo. Furthermore, loss of DmPI31 function causes lethality, cell-cycle abnormalities, and defects in protein degradation, demonstrating that DmPI31 is physiologically required for normal proteasome activity.  相似文献   
127.
128.
129.
130.
This report provides a global view of how gene expression is affected by DNA replication. We analyzed synchronized cultures of Saccharomyces cerevisiae under conditions that prevent DNA replication initiation without delaying cell cycle progression. We use a higher‐order singular value decomposition to integrate the global mRNA expression measured in the multiple time courses, detect and remove experimental artifacts and identify significant combinations of patterns of expression variation across the genes, time points and conditions. We find that, first, ~88% of the global mRNA expression is independent of DNA replication. Second, the requirement of DNA replication for efficient histone gene expression is independent of conditions that elicit DNA damage checkpoint responses. Third, origin licensing decreases the expression of genes with origins near their 3′ ends, revealing that downstream origins can regulate the expression of upstream genes. This confirms previous predictions from mathematical modeling of a global causal coordination between DNA replication origin activity and mRNA expression, and shows that mathematical modeling of DNA microarray data can be used to correctly predict previously unknown biological modes of regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号