首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   4篇
  2021年   1篇
  2020年   1篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   5篇
  2013年   6篇
  2012年   7篇
  2011年   1篇
  2010年   5篇
  2008年   5篇
  2007年   6篇
  2006年   2篇
  2005年   8篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  1998年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
41.

Background

Influential medical journals shape medical science and practice and their prestige is usually appraised by citation impact metrics, such as the journal impact factor. However, how permanent are medical journals and how stable is their impact over time?

Methods and Results

We evaluated what happened to general medical journals that were publishing papers half a century ago, in 1959. Data were retrieved from ISI Web of Science for citations and PubMed (Journals function) for journal history. Of 27 eligible journals publishing in 1959, 4 have stopped circulation (including two of the most prestigious journals in 1959) and another 7 changed name between 1959 and 2009. Only 6 of these 27 journals have been published continuously with their initial name since they started circulation. The citation impact of papers published in 1959 gives a very different picture from the current journal impact factor; the correlation between the two is non-significant and very close to zero. Only 13 of the 5,223 papers published in 1959 received at least 5 citations in 2009.

Conclusions

Journals are more permanent entities than single papers, but they are also subject to major change and their relative prominence can change markedly over time.  相似文献   
42.
We study a subset of the movie collaboration network, http://www.imdb.com, where only adult movies are included. We show that there are many benefits in using such a network, which can serve as a prototype for studying social interactions. We find that the strength of links, i.e., how many times two actors have collaborated with each other, is an important factor that can significantly influence the network topology. We see that when we link all actors in the same movie with each other, the network becomes small-world, lacking a proper modular structure. On the other hand, by imposing a threshold on the minimum number of links two actors should have to be in our studied subset, the network topology becomes naturally fractal. This occurs due to a large number of meaningless links, namely, links connecting actors that did not actually interact. We focus our analysis on the fractal and modular properties of this resulting network, and show that the renormalization group analysis can characterize the self-similar structure of these networks.  相似文献   
43.
The function of the phosphoinositide 5-phosphatase Ship2 was investigated in a new mouse model expressing a germline catalytically-inactive Ship2?/? mutant protein. Ship2?/? mice were viable with defects in somatic growth and in development of muscle, adipose tissue and female genital tract. Lipid metabolism and insulin secretion were also affected in these mice, but glucose tolerance, insulin sensitivity and insulin-induced PKB phosphorylation were not. We expected that the expression of the catalytically inactive Ship2 protein in PI 3′-kinase-defective p110αD933A/+ mice would counterbalance the phenotypes of parental mice by restoring normal PKB signaling but, for most of the parameters tested, this was not the case. Indeed, often, the Ship2?/? phenotype had a dominant effect over the p110αD933A/+ phenotype and, sometimes, there was a surprising additive effect of both mutations. p110αD933A/+Ship2?/? mice still displayed a reduced PKB phosphorylation in response to insulin, compared to wild type mice yet had a normal glucose tolerance and insulin sensitivity, like the Ship2?/? mice. Together, our results suggest that the Ship2?/? phenotype is not dependent on an overstimulated class I PI 3-kinase–PKB signaling pathway and thus, indirectly, that it may be more dependent on the lack of Ship2-produced phosphatidylinositol 3,4-bisphosphate and derived phosphoinositides.  相似文献   
44.
Autocrine signaling systems are commonly studied under cell culture conditions. In a typical cell culture assay, a layer of liquid medium covers a random two-dimensional dispersion of cells, which secrete ligands. In a growing number of experiments, it is important to characterize the spatial range of autocrine and paracrine cell communication. Currently, the spatial distribution of diffusing signals can be analyzed only indirectly, from their effects on the intracellular signaling or physiological responses of autocrine cells. To directly characterize the spatial range of secreted ligands, we propose a stochastic model for autocrine cell cultures and analyze it using a combination of analytical and computational tools. The two main results derived within the framework of this model are 1), an expression for the fraction of autocrine trajectories, i.e., the probability for a ligand to be trapped by the same cell from which it has been secreted; and 2), an expression for the spatial distribution of trapping points of paracrine trajectories. We test these analytical results by stochastic simulations with efficient Brownian dynamics code and apply our model to analyze the spatial operation of autocrine epidermal growth factor receptor systems.  相似文献   
45.
We investigated the effects of methylxanthines on enzymatic activity of phosphoinositide 3-kinases (PI3Ks). We found that caffeine inhibits the in vitro lipid kinase of class I PI3Ks (IC(50) = 75 microm for p110 delta, 400 microm for p110 alpha and p110 beta, and 1 mm for p110 gamma), and theophylline has similar effects (IC(50) = 75 microm for p110 delta, 300 microm for p110 alpha, and 800 microm for p110 beta and p110 gamma) and also inhibits the alpha isoform of class II PI3K (PI3K-C2 alpha) (IC(50) approximately 400 microm). However, four other xanthine derivatives tested (3-isobutyl-1-methylxanthine, 3-propylxanthine, alloxazine, and PD116948 (8-cyclopentyl-1,3-dipropylxanthine)) were an order of magnitude less effective. Surprisingly the triazoloquinazoline CGS15943 (9-chloro-2-(2-furyl)(1,2,d)triazolo(1,5-c)quinazolin-5-amine) also selectively inhibits p110 delta (IC(50) < 10 microm). Caffeine and theophylline also inhibit the intrinsic protein kinase activity of the class IA PI3Ks and DNA-dependent protein kinase, although with a much lower potency than that for the lipid kinase (IC(50) approximately 10 mm for p110 alpha, 3 mm for p110 beta, and 10 mm for DNA-dependent protein kinase). In CHO-IR cells and rat soleus muscle, theophylline and caffeine block the ability of insulin to stimulate protein kinase B with IC(50) values similar to those for inhibition of PI3K activity, whereas insulin stimulation of ERK1 or ERK2 was not inhibited at concentrations up to 10 mm. Theophylline and caffeine also blocked insulin stimulation of glucose transport in CHO-IR cells. These results demonstrate that these methylxanthines are direct inhibitors of PI3K lipid kinase activity but are distinctly less effective against serine kinase activity and thus could be of potential use in dissecting these two distinct kinase activities. Theophylline, caffeine, and CGS15943 may be of particular use in dissecting the specific role of the p110 delta lipid kinase. Finally, we conclude that inhibition of PI3K (p110 delta in particular) is likely explain some of the physiological and pharmacological properties of caffeine and theophylline.  相似文献   
46.
During the growth of Alyssum murale, a nickel accumulator plant, three root peptides chains of 55, 18 and 16kDa undergo phosphorylation. The intensity of the phosphorylated bands decreased in the course of growth in nutrient solution supplied with 0.5mM Ni(2+). In the shoot only two phosphorylated peptide chains with a size of 18 and 16kDa were detected. These two shoot peptides disappeared on the 19th day of growth in Ni(2+)-exposed plants, while the root peptide of 16kDa continued to be present in less intensity. This peptide was identified as the catalytic subunit of nucleoside diphosphate kinase (NDP kinase: E.C. 2.7.4.6) and was named NDPK-B. The enzyme was purified by means of ammonium sulphate precipitation, DEAE-sepharose and hydroxyapatite column chromatography. NDPK-B was thermostable, displayed a molecular mass of 103,000 and was comprised of six catalytic subunits. The autophosphorylated enzyme displayed an isoelectric point (pI) of 6.5. The NDPK-B autophosphorylation activity was metal-dependent. With regard to the transfer reaction, NDPK-B exhibited the following properties: (a) the enzyme had an optimum pH of 7.6; (b) it was capable of using both (gamma-(32)P) ATP and (gamma-(32)P) GTP as phosphate donors and of using all the available NDPs except dCDP as phosphate acceptors; (c) its activity using NDPs as substrates was metal dependent; (d) in the presence of (gamma-(32)P) GTP as the phosphate donor, it phosphorylated exclusively ADP when a mixture of NDPs was added in the reaction mixture; and, (e) ADP had a very low K(m) value towards 8.4nM. This high affinity towards ADP suggests that the enzyme may play a crucial function in the formation of the amount of ATP necessary for Alyssum murale to survive Ni(2+) stress.  相似文献   
47.
We have used a combination of FTIR, VCD, ECD, Raman, and NMR spectroscopies to probe the solution conformations sampled by H-(AAKA)-OH by utilizing an excitonic coupling model and constraints imposed by the 3JCalphaHNH coupling constants of the central residues to simulate the amide I' profile of the IR, isotropic Raman, anisotropic Raman, and VCD spectra in terms of a mixture of three conformations, i.e., polyproline II, beta-strand and right-handed helical. The representative coordinates of the three conformations were obtained from published coil libraries. Alanine was found to exhibit PPII fractions of 0.60 or greater, mixed with smaller fractions of helices and beta-strand conformations. Lysine showed no clear conformational propensity in that it samples polyproline II, beta-strand, and helical conformations with comparable probability. This is at variance with results obtained earlier for ionized polylysine, which suggest a high polyproline II propensity. We reanalyzed previously investigated tetra- and trialanine by combining published vibrational spectroscopy data with 3JCalphaHNH coupling constants and obtained again blends dominated by PPII with smaller admixtures of beta-strand and right-handed helical conformations. The polyproline II propensity of alanine was found to be higher in tetraalanine than in trialanine. For all peptides investigated, our results rule out a substantial population of turn-like conformations. Our results are in excellent agreement with MD simulations on short alanine peptides by Gnanakaran and Garcia [(2003) J. Phys. Chem. B 107, 12555-12557] but at variance with multiple MD simulations particularly for the alanine dipeptide.  相似文献   
48.
Vertebrate embryos generate striking Ca2+ patterns, which are unique regulators of dynamic developmental events. In the present study, we used zebrafish embryos as a model system to examine the developmental roles of Ca2+ during gastrulation. We found that gastrula stage embryos maintain a distinct pattern of cytosolic Ca2+ along the dorsal–ventral axis, with higher Ca2+ concentrations in the ventral margin and lower Ca2+ concentrations in the dorsal margin and dorsal forerunner cells. Suppression of the endoplasmic reticulum Ca2+ pump with 0.5 μM thapsigargin elevates cytosolic Ca2+ in all embryonic regions and induces a randomization of laterality in the heart and brain. Affected hearts, visualized in living embryos by a subtractive imaging technique, displayed either a reversal or loss of left–right asymmetry. Brain defects include a left–right reversal of pitx2 expression in the dorsal diencephalon and a left–right reversal of the prominent habenular nucleus in the brain. Embryos are sensitive to inhibition of the endoplasmic reticulum Ca2+ pump during early and mid gastrulation and lose their sensitivity during late gastrulation and early segmentation. Suppression of the endoplasmic reticulum Ca2+ pump during gastrulation inhibits expression of no tail (ntl) and left–right dynein related (lrdr) in the dorsal forerunner cells and affects development of Kupffer’s vesicle, a ciliated organ that generates a counter-clockwise flow of fluid. Previous studies have shown that Ca2+ plays a role in Kupffer’s vesicle function, influencing ciliary motility and translating the vesicle’s counter-clockwise flow into asymmetric patterns of gene expression. The present results suggest that Ca2+ plays an additional role in the formation of Kupffer’s vesicle.  相似文献   
49.
Philippe Ricord, a famous French venereologist, was the first to distinguish between syphilis and gonorrhoea and founded the famous French school of venereology.  相似文献   
50.
Most bacterial pyruvate dehydrogenase complexes from either Gram-positive or Gram-negative bacteria have E1 components with an α2 homodimeric quaternary structure. In a sequel to our previous publications, we present the first NMR study on the flexible regions of the E1 component from Escherichia coli and its biological relevance. We report sequence-specific NMR assignments for 6 residues in the N-terminal 1–55 region and for a glycine in each of the two mobile active center loops of the E1 component, a 200-kDa homodimer. This was accomplished by using site-specific substitutions and appropriate labeling patterns along with a peptide with the sequence corresponding to the N-terminal 1–35 amino acids of the E1 component. To study the functions of these mobile regions, we also examined the spectra in the presence of (a) a reaction intermediate analog known to affect the mobility of the active center loops, (b) an E2 component construct consisting of a lipoyl domain and peripheral subunit binding domain, and (c) a peptide corresponding to the amino acid sequence of the E2 peripheral subunit binding domain. Deductions from the NMR studies are in excellent agreement with our functional finding, providing a clear indication that the N-terminal region of the E1 interacts with the E2 peripheral subunit binding domain and that this interaction precedes reductive acetylation. The results provide the first structural support to the notion that the N-terminal region of the E1 component of this entire class of bacterial pyruvate dehydrogenase complexes is responsible for binding the E2 component.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号