首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   7篇
  175篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   5篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   9篇
  2011年   12篇
  2010年   13篇
  2009年   3篇
  2008年   11篇
  2007年   7篇
  2006年   5篇
  2005年   7篇
  2004年   6篇
  2003年   6篇
  2002年   6篇
  2001年   2篇
  1999年   4篇
  1998年   4篇
  1995年   1篇
  1992年   6篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   3篇
  1969年   3篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
51.
The X-motif is an in vitro-selected ribozyme that catalyzes RNA cleavage by an internal phosphoester transfer reaction. This ribozyme class is distinguished by the fact that it emerged as the dominant clone among at least 12 different classes of ribozymes when in vitro selection was conducted to favor the isolation of high-speed catalysts. We have examined the structural and kinetic properties of the X-motif in order to provide a framework for its application as an RNA-cleaving agent and to explore how this ribozyme catalyzes phosphoester transfer with a predicted rate constant that is similar to those exhibited by the four natural self-cleaving ribozymes. The secondary structure of the X-motif includes four stem elements that form a central unpaired junction. In a bimolecular format, two of these base-paired arms define the substrate specificity of the ribozyme and can be changed to target different RNAs for cleavage. The requirements for nucleotide identity at the cleavage site are GD, where D = G, A, or U and cleavage occurs between the two nucleotides. The ribozyme has an absolute requirement for a divalent cation cofactor and exhibits kinetic behavior that is consistent with the obligate binding of at least two metal ions.  相似文献   
52.
We report results of the first systematic study of conformational polymorphism of G-rich DNA fragments of Alu-repeats. Alu retrotransposons are primate-specific short interspersed elements. Using the Alu sequence of the prooncogen bcl2 intron and the consensus AluSx sequence as representative examples, we have determined characteristic Alu sites that are capable of adopting G-quadruplex (GQ) conformations (i.e., potential quadruplex sites—PQSAlu), and demonstrated by bioinformatics methods that these sites are Alu-specific in the human genome. Genomic frequencies of PQSAlu were assessed (~1/10000 bp). These sites were found to be characteristic of young (active) Alu families (Alu-Y). A recombinant DNA sequence bearing the Alu element of the human bcl2 gene (304 bp) and its PQS-mutant (Alu-PQS) were constructed. The formation of noncanonical structures in Alubcl2 dsDNA and their absence in the case of Alu-PQS have been shown using DMS-footprinting and atomic force microscopy (AFM). Expression vectors bearing wild-type and mutant Alu insertions in the promoter regions of the reporter gene have been prepared, and their regulatory effects have been compared during transfection of НЕК293 and HeLa cells. We suggest that the dynamic study of the spatial organization of Alu repeats may provide insight into the mechanisms of genomic rearrangements responsible for the development of many oncological and neurodegenerative diseases.  相似文献   
53.
We present the complete genome sequence and proteogenomic map for Acholeplasma laidlawii PG-8A (class Mollicutes, order Acholeplasmatales, family Acholeplasmataceae). The genome of A. laidlawii is represented by a single 1,496,992-bp circular chromosome with an average G+C content of 31 mol%. This is the longest genome among the Mollicutes with a known nucleotide sequence. It contains genes of polymerase type I, SOS response, and signal transduction systems, as well as RNA regulatory elements, riboswitches, and T boxes. This demonstrates a significant capability for the regulation of gene expression and mutagenic response to stress. Acholeplasma laidlawii and phytoplasmas are the only Mollicutes known to use the universal genetic code, in which UGA is a stop codon. Within the Mollicutes group, only the sterol-nonrequiring Acholeplasma has the capacity to synthesize saturated fatty acids de novo. Proteomic data were used in the primary annotation of the genome, validating expression of many predicted proteins. We also detected posttranslational modifications of A. laidlawii proteins: phosphorylation and acylation. Seventy-four candidate phosphorylated proteins were found: 16 candidates are proteins unique to A. laidlawii, and 11 of them are surface-anchored or integral membrane proteins, which implies the presence of active signaling pathways. Among 20 acylated proteins, 14 contained palmitic chains, and six contained stearic chains. No residue of linoleic or oleic acid was observed. Acylated proteins were components of mainly sugar and inorganic ion transport systems and were surface-anchored proteins with unknown functions.  相似文献   
54.
The properties of the isolated Pseudomonas aeruginosa bacteriophage phiPMG1 include the lytic infection cycle, and the formation of a broad halo (semi-transparent zone) around the plaques. We consider phiPMG1 as a potential member of therapeutic cocktails of live phages, and as a source of peptidoglycan and lipopolysaccharide degrading enzymes. Partial sequencing of phiPMG1 genome has revealed high similarity with known temperate P. aeruginosa phage D3. An open reading frame encoding lytic transglycosilase was identified in the genome. This enzyme PMG MUR was obtained in recombinant form, and its activity and substrate specificity has been studied.  相似文献   
55.
56.

Background

Abnormal blood glucose (BG) concentrations have been associated with increased morbidity and mortality in both critically ill adults and infants. Furthermore, hypoglycaemia and glycaemic variability have both been independently linked to mortality in these patients. Continuous Glucose Monitoring (CGM) devices have the potential to improve detection and diagnosis of these glycaemic abnormalities. However, sensor noise is a trade-off of the high measurement rate and must be managed effectively if CGMs are going to be used to monitor, diagnose and potentially help treat glycaemic abnormalities.

Aim

To develop a tool that will aid clinicians in identifying unusual CGM behaviour and highlight CGM data that potentially need to be interpreted with care.

Methods

CGM data and BG measurements from 50 infants at risk of hypoglycaemia were used. Unusual CGM measurements were classified using a stochastic model based on the kernel density method and historical CGM measurements from the cohort. CGM traces were colour coded with very unusual measurements coloured red, highlighting areas to be interpreted with care. A 5-fold validation of the model was Monte Carlo simulated 25 times to ensure an adequate model fit.

Results

The stochastic model was generated using ~67,000 CGM measurements, spread across the glycaemic range ~2-10?mmol/L. A 5-fold validation showed a good model fit: the model 80% confidence interval (CI) captured 83% of clinical CGM data, the model 90% CI captured 91% of clinical CGM data, and the model 99% CI captured 99% of clinical CGM data. Three patient examples show the stochastic classification method in use with 1) A stable, low variability patient which shows no unusual CGM measurements, 2) A patient with a very sudden, short hypoglycaemic event (classified as unusual), and, 3) A patient with very high, potentially un-physiological, glycaemic variability after day 3 of monitoring (classified as very unusual).

Conclusions

This study has produced a stochastic model and classification method capable of highlighting unusual CGM behaviour. This method has the potential to classify important glycaemic events (e.g. hypoglycaemia) as true clinical events or sensor noise, and to help identify possible sensor degradation. Colour coded CGM traces convey the information quickly and efficiently, while remaining computationally light enough to be used retrospectively or in real-time.  相似文献   
57.
Tissue fibrosis occurs when matrix production outpaces matrix degradation. Degradation of collagen, the main component of fibrotic tissue, is mediated through an extracellular proteolytic pathway and intracellular pathway of cellular uptake and lysosomal digestion. Recent studies demonstrate that disruption of the intracellular pathways can exacerbate fibrosis. These pathways are poorly characterized. Here we identify novel mediators of the intracellular pathway of collagen turnover through a genome-wide RNA interference screen in Drosophila S2 cells. Screening of 7505 Drosophila genes conserved among metazoans identified 22 genes that were required for efficient internalization of type I collagen. These included proteins involved in vesicle transport, the actin cytoskeleton, and signal transduction. We show further that the flotillin genes have a conserved and central role in collagen uptake in Drosophila and human cells. Short hairpin RNA–mediated silencing of flotillins in human monocyte and fibroblasts impaired collagen uptake by promoting lysosomal degradation of the endocytic collagen receptors uPARAP/Endo180 and mannose receptor. These data provide an initial characterization of intracellular pathways of collagen turnover and identify the flotillin genes as critical regulators of this process. A better understanding of these pathways may lead to novel therapies that reduce fibrosis by increasing collagen turnover.  相似文献   
58.
59.
Following the publication of the last of the series of Flora Europaea Notulae, No. 20 in the Botanical Journal of the Linnean Society , 76: 297–384 (1978), a number of additions or alterations have been drawn to our attention. These are published in continuation.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号