首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   537篇
  免费   42篇
  国内免费   1篇
  2021年   8篇
  2020年   18篇
  2019年   42篇
  2018年   31篇
  2017年   4篇
  2016年   11篇
  2015年   11篇
  2014年   19篇
  2013年   28篇
  2012年   8篇
  2011年   9篇
  2010年   14篇
  2009年   8篇
  2008年   15篇
  2007年   22篇
  2006年   24篇
  2005年   16篇
  2004年   6篇
  2003年   12篇
  2002年   15篇
  2001年   24篇
  2000年   10篇
  1999年   15篇
  1998年   18篇
  1997年   8篇
  1996年   19篇
  1995年   16篇
  1994年   4篇
  1993年   13篇
  1992年   12篇
  1991年   8篇
  1989年   15篇
  1987年   5篇
  1985年   3篇
  1984年   6篇
  1982年   3篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1976年   4篇
  1975年   7篇
  1974年   5篇
  1973年   3篇
  1972年   5篇
  1971年   10篇
  1970年   3篇
  1969年   5篇
  1968年   3篇
  1967年   3篇
  1966年   3篇
排序方式: 共有580条查询结果,搜索用时 332 毫秒
181.
Considering the high rate of osteoclast-related diseases worldwide, research targeting osteoclast formation/function is crucial. In vitro, we demonstrated that chitooligosaccharide (CS) dramatically inhibited osteoclastogenesis as well as osteoclast function dose-dependently. CS suppressed osteoclast-specific genes expression during osteoclastogenesis. Furthermore, we found that CS attenuated receptor activator of nuclear factor kappa B ligand (RANKL)-mediated mitogen-activated protein kinase (MAPK) pathway involving p38, erk1/2, and jnk, leading to the reduced expression of c-fos and nuclear factor of activated T cells c1 (NFATc1) during osteoclast differentiation. In vivo, we found CS protected rats from periodontitis-induced alveolar bone loss by micro-computerized tomography and histological analysis. Overall, CS inhibited RANKL-induced osteoclastogenesis and ligature-induced rat periodontitis model, probably by suppressing the MAPK/c-fos/NFATc1 signaling pathway. Therefore, CS may be a safe and promising treatment for osteoclast-related diseases.  相似文献   
182.
183.
Muscle protein synthesis (MPS) increases after consumption of a protein-containing meal but returns to baseline values within 3 h despite continued elevations of plasma amino acids and mammalian target of rapamycin (mTORC1) signaling. This study evaluated the potential for supplemental leucine (Leu), carbohydrates (CHO), or both to prolong elevated MPS after a meal. Male Sprague-Dawley rats (~270 g) trained to consume three meals daily were food deprived for 12 h, and then blood and gastrocnemius muscle were collected 0, 90, or 180 min after a standard 4-g test meal (20% whey protein). At 135 min postmeal, rats were orally administered 2.63 g of CHO, 270 mg of Leu, both, or water (sham control). Following test meal consumption, MPS peaked at 90 min and then returned to basal (time 0) rates at 180 min, although ribosomal protein S6 kinase and eIF4E-binding protein-1 phosphorylation remained elevated. In contrast, rats administered Leu and/or CHO supplements at 135 min postmeal maintained peak MPS through 180 min. MPS was inversely associated with the phosphorylation states of translation elongation factor 2, the "cellular energy sensor" adenosine monophosphate-activated protein kinase-α (AMPKα) and its substrate acetyl-CoA carboxylase, and increases in the ratio of AMP/ATP. We conclude that the incongruity between MPS and mTORC1 at 180 min reflects a block in translation elongation due to reduced cellular energy. Administering Leu or CHO supplements ~2 h after a meal maintains cellular energy status and extends the postprandial duration of MPS.  相似文献   
184.
Identifying links between nutritional condition of individuals and population trajectories greatly enhances our understanding of the ecology, conservation, and management of wildlife. For northern ungulates, the potential impacts of a changing climate to populations are predicted to be nutritionally mediated through an increase in the severity and variance in winter conditions. Foraging conditions and the availability of body protein as a store for reproduction in late winter may constrain productivity in northern ungulates, yet the link between characteristics of wintering habitats and protein status has not been established for a wild ungulate. We used a non‐invasive proxy of protein status derived from isotopes of N in excreta to evaluate the influence of winter habitats on the protein status of muskoxen in three populations in Alaska (2005–2008). Multiple regression and an information‐theoretic approach were used to compare models that evaluated the influence of population, year, and characteristics of foraging sites (components of diet and physiography) on protein status for groups of muskoxen. The observed variance in protein status among groups of muskoxen across populations and years was partially explained (45%) by local foraging conditions that affected forage availability. Protein status improved for groups of muskoxen as the amount of graminoids in the diet increased (?0.430 ± 0.31, β± 95% CI) and elevation of foraging sites decreased (0.824 ± 0.67). Resources available for reproduction in muskoxen are highly dependent upon demographic, environmental, and physiographic constraints that affect forage availability in winter. Due to their very sedentary nature in winter, muskoxen are highly susceptible to localized foraging conditions; therefore, the spatial variance in resource availability may exert a strong effect on productivity. Consequently, there is a clear need to account for climate–topography effects in winter at multiple scales when predicting the potential impacts of climatic shifts on population trajectories of muskoxen.  相似文献   
185.
186.
187.
The monophyletic Pteridaceae accounts for roughly 10% of extant fern diversity and occupies an unusually broad range of ecological niches, including terrestrial, epiphytic, xeric-adapted rupestral, and even aquatic species. In this study, we present the results of the first broad-scale and multi-gene phylogenetic analyses of these ferns, and determine the affinities of several previously unsampled genera. Our analyses of two newly assembled data sets (including 169 newly obtained sequences) resolve five major clades within the Pteridaceae: cryptogrammoids, ceratopteridoids, pteridoids, adiantoids, and cheilanthoids. Although the composition of these clades is in general agreement with earlier phylogenetic studies, it is very much at odds with the most recent subfamilial classification. Of the previously unsampled genera, two (Neurocallis and Ochropteris) are nested within the genus Pteris; two others (Monogramma and Rheopteris) are early diverging vittarioid ferns, with Monogramma resolved as polyphyletic; the last previously unsampled genus (Adiantopsis) occupies a rather derived position among cheilanthoids. Interestingly, some clades resolved within the Pteridaceae can be characterized by their ecological preferences, suggesting that the initial diversification in this family was tied to ecological innovation and specialization. These processes may well be the basis for the diversity and success of the Pteridaceae today.  相似文献   
188.
Pterygium is a triangular-shaped hyperplastic growth, characterized by conjunctivalization, inflammation, and connective tissue remodeling. Our previous meta-analysis found that cigarette smoking is associated with a reduced risk of pterygium. Yet, the biological effect of cigarette smoke components on pterygium has not been studied. Here we reported the proliferation and migration properties of human primary pterygium cells with continuous exposure to nicotine and cotinine. Human primary pterygium cells predominantly expressed the α5, β1, and γ subunits of the nicotinic acetylcholine receptor. Continuous exposure to the mixture of 0.15 μM nicotine and 2 μM cotinine retarded pterygium cell proliferation by 16.04% (P = 0.009) and hindered their migration by 11.93% ( P = 0.039), without affecting cell apoptosis. SNAIL and α-smooth muscle actin protein expression was significantly downregulated in pterygium cells treated with 0.15 μM nicotine-2 μM cotinine mixture by 1.33- ( P = 0.036) and 1.31-fold ( P = 0.001), respectively. Besides, the 0.15 μM nicotine-2 μM cotinine mixture also reduced matrix metalloproteinase (MMP)-1 and MMP-9 expressions in pterygium cells by 1.56- ( P = 0.043) and 1.27-fold ( P = 0.012), respectively. In summary, this study revealed that continuous exposure of nicotine and cotinine inhibited human primary pterygium cell proliferation and migration in vitro by reducing epithelial-to-mesenchymal transition and MMP protein expression, partially explaining the lower incidence of pterygium in cigarette smokers.  相似文献   
189.
Spinal cord injury (SCI) is characterized by dramatic neurons loss and axonal regeneration suppression. The underlying mechanism associated with SCI-induced immune suppression is still unclear. Weighted gene coexpression network analysis (WGCNA) is now widely applied for the identification of the coexpressed modules, hub genes, and pathways associated with clinic traits of diseases. We performed this study to identify hub genes associated with SCI development. Gene Expression Omnibus (GEO) data sets GSE45006 and GSE20907 were downloaded and the significant correlativity and connectivity between them were detected using WGCNA. Three significant consensus modules, including 567 eigengenes, were identified from the master GSE45006 data following the preconditions of approximate scale-free topology for WGCNA. Further bioinformatics analysis showed these eigengenes were involved in inflammatory and immune responses in SCI. Three hub genes Rac2, Itgb2, and Tyrobp and one pathway “natural killer cell-mediated cytotoxicity” were identified following short time-series expression miner, protein-protein interaction network, and functional enrichment analysis. Gradually upregulated expression patterns of Rac2, Itgb2, and Tyrobp genes at 0, 3, 7, and 14 days after SCI were confirmed based on GSE45006 and GSE20907 data set. Finally, we found that Rac2, Itgb2, and Tyrobp genes might take crucial roles in SCI development through the “natural killer cell–mediated cytotoxicity” pathway.  相似文献   
190.
The aim of this study is to investigate the effects of type I collagen on bone defects and on genes specifically for osteogenesis in a rat model. Two millimeter drill hole bone defect was created in the femur of rats. In the experimental group, type I collagen was applied in bone defects whereas in control group defects were left empty. Inflammation, development of connective tissue, osteogenesis, and foreign body reaction parameters evaluated with histologically and genes evaluated by blood samples. In the experimental group, the histopathologically significant change was found in favor of bone healing only at the first week. A significant increase was found in genetic expressions of BMP-1, 2, 3, 4, 5, 6, 7, TGF-βRII, Smad-1, IL-6, BMPR-IA, BMPR-IB, Eng, BMPR-II, c-fos, Cdkn1a, Chrd, Gdf-5, Id-1, PDGF-β, IGF-1, Serpine-1, and TGF-βRI at the first hour. At the first, third, and sixth week, no significant increase was found in any of the gene expressions. Type I collagen is found to be effective in favor of bone healing through increased inflammatory cytokines and expression of BMP genes in the early stages of fracture healing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号