首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   5篇
  国内免费   2篇
  121篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2008年   3篇
  2007年   9篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
41.
Heme d1 plays an important role in denitrification as the essential cofactor of the cytochrome cd1 nitrite reductase NirS. At present, the biosynthesis of heme d1 is only partially understood. The last step of heme d1 biosynthesis requires a so far unknown enzyme that catalyzes the introduction of a double bond into one of the propionate side chains of the tetrapyrrole yielding the corresponding acrylate side chain. In this study, we show that a Pseudomonas aeruginosa PAO1 strain lacking the NirN protein does not produce heme d1. Instead, the NirS purified from this strain contains the heme d1 precursor dihydro-heme d1 lacking the acrylic double bond, as indicated by UV-visible absorption spectroscopy and resonance Raman spectroscopy. Furthermore, the dihydro-heme d1 was extracted from purified NirS and characterized by UV-visible absorption spectroscopy and finally identified by high-resolution electrospray ionization mass spectrometry. Moreover, we show that purified NirN from P. aeruginosa binds the dihydro-heme d1 and catalyzes the introduction of the acrylic double bond in vitro. Strikingly, NirN uses an electron bifurcation mechanism for the two-electron oxidation reaction, during which one electron ends up on its heme c cofactor and the second electron reduces the substrate/product from the ferric to the ferrous state. On the basis of our results, we propose novel roles for the proteins NirN and NirF during the biosynthesis of heme d1.  相似文献   
42.
43.
44.
45.
It is unknown whether nonparallel pancreatic enzyme output occurs under basal conditions in humans. We aimed to determine whether the circadian or wake-sleep cycle influences the relationship among pancreatic enzymes or between pancreatic secretory and jejunal motor activity. Using orojejunal multilumen intubation, we measured enzyme outputs and proximal jejunal motility index during consecutive daytime and nighttime periods in each of seven fasting, healthy volunteers. Enzyme outputs were correlated tightly during daytime phases of wakefulness and nighttime phases of sleep (r > 0.72, P < 0.001). During nocturnal phases of wakefulness, output of proteases (r = 0.84, P < 0.001), but not of amylase and trypsin (r = 0.12), remained associated. Nocturnally, particularly during sleep, pancreatic secretory activity was directly correlated with jejunal motility index (r > 0.50, P < 0.001). In conclusion, parallel secretion of pancreatic enzymes dominates throughout the circadian cycle. Nonparallel secretion during nocturnal phases of wakefulness may be due to merely circadian effects or to the coupling of the wake-sleep and the circadian cycle. The association between fluctuations of secretory and motor activity appears to be particularly tight during the night.  相似文献   
46.
47.
48.
Summary Dissociated embryonic chicken retinal cells regenerate in rotary culture into cellular spheres that consist of subareas expressing all three nuclear layers in an inside-out sequence (rosetted vitroretinae). However, when pigmented cells from the eye margin (peripheral retinal pigment epithelium) are added to the system, the sequence of layers is identical with that of an in-situ retina (laminar vitroretinae). In order to elucidate further the lamina-stabilizing effect exerted by the retinal pigment epithelium, we have compared both systems, laying particular emphasis on the ultrastructure of the basal lamina and of Müller glia processes. Ultrastructurally, in both systems, an outer limiting membrane, inner segments of photoreceptors and the segregation of cell bodies into three cell layers develop properly. Synapses are detectable in a premature state, although only in the inner plexiform layer of laminar vitroretinae. Although present in both systems, radial processes of juvenile Müller glia cells are properly fixed at their endfeet only in laminar vitroretinae, since a basal lamina is only expressed here. Large amounts of laminin are detected immunohistochemically within the retinal pigment epithelium and along a basal stalk that reaches inside the laminar vitroretinae. We conclude that the peripheral retinal pigment epithelium is essential for the expression of a basal lamina in vitro. Moreover, the basal lamina may be responsible both for stabilizing the correct polarity of retinal layers and for the final differentiation of the Müller cells.  相似文献   
49.
A radioimmunoassay was developed using an antibody raised in rabbits against synthetic porcine PYY. This radioimmunoassay was used to detect PYY immunoreactivity in human intestinal extracts. Human colonic mucosa was extracted with acid, centrifuged and the supernatant concentrated by low pressure preparative reverse phase chromatography. A subsequent C-18 reverse phase HPLC step separated two peaks of PYY immunoreactivity. Each peak was purified by sequential steps of ion-exchange FPLC and reverse phase HPLC. In the final purification step single absorbance peaks were associated with PYY immunoreactivity. Microsequence, amino acid, and mass spectral analysis of the intact and tryptic fragments of the two peptides were consistent with the structures: YPIKPEAPGEDASPEELNRYYASLRHYLNLVTRQRY-amide [human PYY(1-36)] and--IKPEAPGEDASPEELNRYYASLRHYLNLVTRQRY-amide [human PYY(3-36)]. Human PYY(1-36) differs from porcine PYY only at position 3, with Ile instead of Ala, and position 18, with Asn instead of Ser. PYY(3-36) may differ in its biological activity from the intact peptide. Its high proportions in the colon suggest that it is released into the circulation where it could act as a partial antagonist of PYY(1-36).  相似文献   
50.
Summary AChE-positive cells suddenly amass in a superficial layer of the neuroepithelium; this layer finally covers, in a sheat-like manner, the entire surface of the embryonic chicken brain. This feature is functionally not understood; however, it appears shortly after the neurons become post-mitotic, and the lateral extensions of this layer can easily be traced using histochemistry on serial brain sections. The layer can therefore be exploited to delineate spatially the waves of onset of biochemical tissue differentiation. We have studied whole brains between stages 11 and 30 and provide the first complete spatial schemes of brain differentiation based on computer-reconstructed, two- and three-dimensional maps. The brain does not differentiate in one smooth coherent wave, but instead five separate primary AChE-activation zones are detected: the first originating at stage 11 (rhombencephalic wave), the second at the same time (midbrain wave), the third at stage 15 ("tectal wave). A fourth zone develops later, at stage 18, from the bottom part of the telencephalon to the top. Retinal development also starts at stage 18. In a given area, it appears that AChE-development shortly precedes that of the formation of major fiber tracts. AChE might therefore represent a prerequisite for fiber growth and pathfinding.Abbreviations AChE acetylcholinesterase - BChE butyrylcholinesterase - ATC acetylthiocholine - OS ora serrata - ON optic stalk - OP otic placode  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号